freddyaboulton's picture
Fix errors
aca1d5b
import gradio as gr
from gradio_webrtc import (
WebRTC,
ReplyOnStopWords,
AdditionalOutputs,
audio_to_bytes,
get_twilio_turn_credentials,
)
import numpy as np
import base64
import re
from groq import Groq
from dotenv import load_dotenv
load_dotenv()
spinner_html = open("spinner.html").read()
sandbox_html = open("sandbox.html").read()
something_happened_html = open("something_happened.html").read()
rtc_configuration = get_twilio_turn_credentials()
import logging
# Configure the root logger to WARNING to suppress debug messages from other libraries
logging.basicConfig(level=logging.WARNING)
# Create a console handler
console_handler = logging.FileHandler("gradio_webrtc.log")
console_handler.setLevel(logging.DEBUG)
# Create a formatter
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
console_handler.setFormatter(formatter)
# Configure the logger for your specific library
logger = logging.getLogger("gradio_webrtc")
logger.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
groq_client = Groq()
system_prompt = "You are an AI coding assistant. Your task is to write single-file HTML applications based on a user's request. Only return the necessary code. Include all necessary imports and styles. You may also be asked to edit your original response."
user_prompt = "Please write a single-file HTML application to fulfill the following request.\nThe message:{user_message}\nCurrent code you have written:{code}"
def extract_html_content(text):
"""
Extract content including HTML tags.
"""
match = re.search(r"<!DOCTYPE html>.*?</html>", text, re.DOTALL)
return match.group(0) if match else None
def display_in_sandbox(code):
encoded_html = base64.b64encode(code.encode("utf-8")).decode("utf-8")
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
return f'<iframe src="{data_uri}" width="100%" height="600px"></iframe>'
def generate(user_message: tuple[int, np.ndarray], history: list[dict], code: str):
yield AdditionalOutputs(history, spinner_html)
sr, audio = user_message
audio = audio.squeeze()
text = groq_client.audio.transcriptions.create(
file=("audio-file.mp3", audio_to_bytes((sr, audio))),
model="whisper-large-v3-turbo",
response_format="verbose_json",
).text
user_msg_formatted = user_prompt.format(user_message=text, code=code)
history.append({"role": "user", "content": user_msg_formatted})
print("generating response")
response = groq_client.chat.completions.create(
model="llama-3.3-70b-versatile",
messages=history,
temperature=1,
max_tokens=2048,
top_p=1,
stream=False,
)
print("finished generating response")
output = response.choices[0].message.content
try:
html_code = extract_html_content(output)
except Exception as e:
html_code = something_happened_html
print(e)
history.append({"role": "assistant", "content": output})
yield AdditionalOutputs(history, html_code)
with gr.Blocks(css=".code-component {max-height: 500px !important}") as demo:
history = gr.State([{"role": "system", "content": system_prompt}])
with gr.Row():
with gr.Column(scale=1):
gr.HTML(
"""
<h1 style='text-align: center'>
Hello Llama! 🦙
</h1>
<p style='text-align: center'>
Create and edit single-file HTML applications with just your voice! After recording, say "Hey Llama" and wait for confirmation, before asking your question.
</p>
<p style='text-align: center'>
Each conversation is limited to 90 seconds. Once the time limit is up you can rejoin the conversation.
</p>
"""
)
webrtc = WebRTC(
rtc_configuration=rtc_configuration, mode="send", modality="audio"
)
with gr.Column(scale=10):
with gr.Tabs():
with gr.Tab("Sandbox"):
sandbox = gr.HTML(value=sandbox_html)
with gr.Tab("Code"):
code = gr.Code(
language="html",
max_lines=50,
interactive=False,
elem_classes="code-component",
)
with gr.Tab("Chat"):
cb = gr.Chatbot(type="messages")
webrtc.stream(
ReplyOnStopWords(
generate,
input_sample_rate=16000,
stop_words=["hello llama", "hello lama", "hello lamma", "hello llamma"],
),
inputs=[webrtc, history, code],
outputs=[webrtc],
time_limit=90,
concurrency_limit=10,
)
webrtc.on_additional_outputs(
lambda history, code: (history, code, history), outputs=[history, code, cb]
)
code.change(display_in_sandbox, code, sandbox, queue=False)
if __name__ == "__main__":
demo.launch()