Spaces:
Sleeping
Sleeping
fredcaixeta
commited on
Commit
·
d043f81
1
Parent(s):
8f90e63
go
Browse files- .python-version +1 -0
- agent.py +1 -1
- app.py +34 -20
- main.py +6 -0
- pyproject.toml +7 -0
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.12
|
agent.py
CHANGED
|
@@ -33,7 +33,7 @@ model = GroqModel(
|
|
| 33 |
)
|
| 34 |
|
| 35 |
|
| 36 |
-
def start_convo(user_input, messages_history):
|
| 37 |
search_agent = Agent(
|
| 38 |
model,
|
| 39 |
system_prompt=DEFAULT_SYSTEM_PROMPT
|
|
|
|
| 33 |
)
|
| 34 |
|
| 35 |
|
| 36 |
+
def 'start_convo(user_input, messages_history):
|
| 37 |
search_agent = Agent(
|
| 38 |
model,
|
| 39 |
system_prompt=DEFAULT_SYSTEM_PROMPT
|
app.py
CHANGED
|
@@ -2,45 +2,59 @@ import gradio as gr
|
|
| 2 |
from ocr_script import ocr_tesseract_only
|
| 3 |
import uuid
|
| 4 |
from agent import start_convo
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
return result.output
|
| 22 |
|
| 23 |
with gr.Blocks() as demo:
|
| 24 |
with gr.Tabs():
|
| 25 |
with gr.Tab("Text OCR Tesseract only"):
|
|
|
|
|
|
|
| 26 |
with gr.Row():
|
| 27 |
img_in = gr.Image(label="Imagem (png, jpg, jpeg)", type="pil")
|
| 28 |
txt_out = gr.Textbox(label="Texto OCR", lines=12)
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
with gr.Tab("Chat"):
|
| 32 |
user_id = gr.State(str(uuid.uuid4()))
|
| 33 |
gr.ChatInterface(
|
| 34 |
fn=respond,
|
| 35 |
-
additional_inputs=[user_id],
|
| 36 |
type="messages",
|
| 37 |
title="Chat with AI Agent with Access to Extracted Data",
|
| 38 |
description="Envie perguntas sobre os dados extraídos.",
|
| 39 |
save_history=True,
|
| 40 |
-
examples
|
| 41 |
["What is the name of the invoice document available?"],
|
| 42 |
["Which document has the ID aZwfUT2Zs?"]
|
| 43 |
-
|
| 44 |
cache_examples=True,
|
| 45 |
)
|
| 46 |
demo.launch()
|
|
|
|
| 2 |
from ocr_script import ocr_tesseract_only
|
| 3 |
import uuid
|
| 4 |
from agent import start_convo
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
from pydantic_ai import Agent, RunContext
|
| 9 |
+
from pydantic_ai.usage import UsageLimits
|
| 10 |
+
from pydantic_ai.models.groq import GroqModel
|
| 11 |
+
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
api_key = os.getenv("GROQ_API_KEY")
|
| 15 |
+
|
| 16 |
+
# Modelo Groq via Pydantic AI
|
| 17 |
+
model = GroqModel(model_name="openai/gpt-oss-120b")
|
| 18 |
+
|
| 19 |
+
def respond(message, history, user_id, ocr_text):
|
| 20 |
+
# Garantir que o system prompt seja o texto OCR atual
|
| 21 |
+
system_prompt_text = ocr_text or "Nenhum texto OCR disponível."
|
| 22 |
+
search_agent = Agent(model, system_prompt=system_prompt_text)
|
| 23 |
+
|
| 24 |
+
# Se usar seu start_convo, injete o mesmo prompt no agente interno, ou remova se for redundante
|
| 25 |
+
# agent_config = start_convo(user_input=str(message), messages_history=history, system_prompt=system_prompt_text)
|
| 26 |
+
|
| 27 |
+
result = search_agent.run_sync(str(message))
|
| 28 |
return result.output
|
| 29 |
|
| 30 |
with gr.Blocks() as demo:
|
| 31 |
with gr.Tabs():
|
| 32 |
with gr.Tab("Text OCR Tesseract only"):
|
| 33 |
+
ocr_state = gr.State("") # Armazena o texto OCR para uso no chat
|
| 34 |
+
|
| 35 |
with gr.Row():
|
| 36 |
img_in = gr.Image(label="Imagem (png, jpg, jpeg)", type="pil")
|
| 37 |
txt_out = gr.Textbox(label="Texto OCR", lines=12)
|
| 38 |
+
|
| 39 |
+
def run_ocr(img):
|
| 40 |
+
text = ocr_tesseract_only(img)
|
| 41 |
+
return text, text
|
| 42 |
+
|
| 43 |
+
img_in.change(fn=run_ocr, inputs=img_in, outputs=[txt_out, ocr_state])
|
| 44 |
|
| 45 |
with gr.Tab("Chat"):
|
| 46 |
user_id = gr.State(str(uuid.uuid4()))
|
| 47 |
gr.ChatInterface(
|
| 48 |
fn=respond,
|
| 49 |
+
additional_inputs=[user_id, ocr_state], # injeta o texto OCR no fn
|
| 50 |
type="messages",
|
| 51 |
title="Chat with AI Agent with Access to Extracted Data",
|
| 52 |
description="Envie perguntas sobre os dados extraídos.",
|
| 53 |
save_history=True,
|
| 54 |
+
examples=[
|
| 55 |
["What is the name of the invoice document available?"],
|
| 56 |
["Which document has the ID aZwfUT2Zs?"]
|
| 57 |
+
],
|
| 58 |
cache_examples=True,
|
| 59 |
)
|
| 60 |
demo.launch()
|
main.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def main():
|
| 2 |
+
print("Hello from extractor!")
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == "__main__":
|
| 6 |
+
main()
|
pyproject.toml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "extractor"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Add your description here"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.12"
|
| 7 |
+
dependencies = []
|