music-mcp / tools /audio_cleaning.py
frascuchon's picture
frascuchon HF Staff
fixing tools
f62bfdb
import os
import tempfile
from typing import Optional
import librosa
import numpy as np
import soundfile as sf
from scipy.signal import butter, lfilter, filtfilt
def _load_audio(audio_path: str, mono: bool = False) -> tuple[np.ndarray, int]:
"""Load audio file with standard settings."""
y, sr = librosa.load(audio_path, sr=None, mono=mono, res_type="soxr_vhq")
# Ensure shape is (samples, channels) for stereo audio
if not mono and y.ndim > 1 and y.shape[0] == 2:
y = y.T
return y, int(sr)
def detect_noise_profile(audio: np.ndarray, sample_rate: int) -> dict:
"""
Analyze audio to detect noise characteristics.
Args:
audio: Audio data as numpy array
sample_rate: Sample rate of audio
Returns:
Dictionary with noise profile information
"""
# Convert to mono for analysis if stereo
if audio.ndim > 1:
audio = np.mean(audio, axis=1)
# Ensure audio is long enough for STFT
if len(audio) < 2048:
return {
"noise_floor": 0.001,
"steady_noise": 0.001,
"hiss_level": 0.001,
"snr_estimate": 20.0,
"has_significant_noise": False,
}
# Compute spectral features for noise detection
stft = librosa.stft(audio, n_fft=2048, hop_length=512)
magnitude = np.abs(stft)
# Identify noise floor (quiet parts)
noise_floor = np.percentile(magnitude, 10)
# Detect steady noise (consistent low-frequency content)
freqs = librosa.fft_frequencies(sr=sample_rate, n_fft=2048)
low_freq_mask = freqs < 200 # Below 200 Hz
steady_noise = np.mean(magnitude[low_freq_mask, :], axis=0)
# Detect hiss (high frequency noise)
high_freq_mask = freqs > 4000 # Above 4 kHz
hiss_level = np.mean(magnitude[high_freq_mask, :], axis=0)
# Compute overall noise characteristics
signal_power = np.mean(magnitude**2, axis=1)
noise_power = np.mean(magnitude**2, axis=1) - signal_power
snr_estimate = 10 * np.log10(signal_power / (noise_power + 1e-10))
return {
"noise_floor": float(noise_floor),
"steady_noise": float(np.mean(steady_noise)),
"hiss_level": float(np.mean(hiss_level)),
"snr_estimate": float(np.mean(snr_estimate)),
"has_significant_noise": bool(
np.mean(steady_noise) > noise_floor * 2
or np.mean(hiss_level) > noise_floor * 1.5
),
}
def spectral_subtraction(
audio: np.ndarray, noise_profile: dict, sample_rate: int
) -> np.ndarray:
"""
Apply spectral subtraction to remove identified noise.
Args:
audio: Input audio data
noise_profile: Noise profile from detect_noise_profile()
sample_rate: Sample rate of audio
Returns:
Cleaned audio data
"""
# Handle stereo audio by processing each channel separately
if audio.ndim > 1:
cleaned_channels = []
for channel in range(audio.shape[1]):
channel_audio = audio[:, channel]
cleaned_channel = _process_channel_spectral_subtraction(
channel_audio, noise_profile, sample_rate
)
cleaned_channels.append(cleaned_channel)
return np.column_stack(cleaned_channels)
else:
return _process_channel_spectral_subtraction(audio, noise_profile, sample_rate)
def _process_channel_spectral_subtraction(
audio: np.ndarray, noise_profile: dict, sample_rate: int
) -> np.ndarray:
"""Process a single channel with spectral subtraction."""
# Ensure audio is long enough for STFT
if len(audio) < 2048:
return audio
# Compute STFT of audio
stft = librosa.stft(audio, n_fft=2048, hop_length=512)
magnitude = np.abs(stft)
phase = np.angle(stft)
# Create noise gate based on noise floor
noise_gate = np.minimum(magnitude / (noise_profile["noise_floor"] + 1e-10), 1.0)
# Apply gentle noise reduction
reduction_factor = 0.3 if noise_profile["has_significant_noise"] else 0.15
cleaned_magnitude = magnitude * (1 - noise_gate * reduction_factor)
# Reconstruct audio
cleaned_stft = cleaned_magnitude * np.exp(1j * phase)
cleaned_audio = librosa.istft(cleaned_stft, hop_length=512, length=len(audio))
return cleaned_audio
def adaptive_filter(
audio: np.ndarray, sample_rate: int, noise_type: str = "general"
) -> np.ndarray:
"""
Apply adaptive filtering based on noise type.
Args:
audio: Input audio data
sample_rate: Sample rate of audio
noise_type: Type of noise to address ('general', 'hiss', 'hum', 'background')
Returns:
Filtered audio data
"""
# Handle stereo audio by processing each channel separately
if audio.ndim > 1:
filtered_channels = []
for channel in range(audio.shape[1]):
channel_audio = audio[:, channel]
filtered_channel = _process_channel_adaptive_filter(
channel_audio, sample_rate, noise_type
)
filtered_channels.append(filtered_channel)
return np.column_stack(filtered_channels)
else:
return _process_channel_adaptive_filter(audio, sample_rate, noise_type)
def _process_channel_adaptive_filter(
audio: np.ndarray, sample_rate: int, noise_type: str = "general"
) -> np.ndarray:
"""Process a single channel with adaptive filtering."""
if noise_type == "hiss":
# High-pass filter to reduce hiss (above 4kHz)
cutoff = 4000
b, a = butter(4, cutoff, fs=sample_rate, btype="high", output="ba")
filtered_audio = lfilter(b, a, audio)
elif noise_type == "hum":
# Notch filter for common hum frequencies (50/60 Hz and harmonics)
# Apply multiple notch filters
filtered_audio = audio.copy()
hum_freqs = [50, 60, 100, 120, 180, 240] # Common power line harmonics
for freq in hum_freqs:
if freq < sample_rate / 2:
# Create notch filter
b, a = butter(
2,
[freq * 0.9, freq * 1.1],
fs=sample_rate,
btype="bandstop",
output="ba",
)
filtered_audio = lfilter(b, a, filtered_audio)
elif noise_type == "background":
# Spectral subtraction for background noise
noise_profile = detect_noise_profile(audio, sample_rate)
filtered_audio = spectral_subtraction(audio, noise_profile, sample_rate)
else:
# General broadband noise reduction
# Apply gentle low-pass filter
cutoff = int(min(8000, sample_rate // 2.5))
b, a = butter(4, cutoff, fs=sample_rate, btype="low", output="ba")
filtered_audio = lfilter(b, a, audio)
return filtered_audio
def remove_noise(
audio_path: str,
noise_type: str = "general",
sensitivity: float = 0.5,
output_path: Optional[str] = None,
output_format: str = "wav",
) -> str:
"""
Remove noise from audio using adaptive filtering and spectral subtraction.
This function analyzes the audio to detect noise characteristics and applies
appropriate noise reduction techniques based on the noise type and sensitivity
settings. It supports various noise types including hiss, hum, rumble, and
general background noise.
Args:
audio_path: Path to the audio file or URL (supports common formats: WAV, MP3, FLAC, M4A)
noise_type: Type of noise to remove ('general', 'hiss', 'hum', 'rumble', 'background')
- 'general': Broadband noise reduction
- 'hiss': High-frequency noise removal
- 'hum': Power line hum removal (50/60 Hz)
- 'rumble': Low-frequency rumble removal
- 'background': General background noise
sensitivity: Noise reduction sensitivity (0.0 to 1.0, default: 0.5)
Higher values remove more noise but may affect audio quality
output_path: Optional output directory (default: None, uses temp directory)
output_format: Output format for the cleaned audio ('wav' or 'mp3', default: 'wav')
Returns:
Path to the cleaned audio file
Examples:
>>> remove_noise("noisy_recording.wav", "hiss", 0.7, "output", "wav")
# Returns 'path/to/noisy_recording_hiss_removed.wav' with reduced hiss
>>> remove_noise("podcast.mp3", "background", 0.3, "output", "mp3")
# Returns 'path/to/podcast_background_removed.mp3' with reduced background noise
Note:
- Higher sensitivity values remove more noise but may affect audio quality
- Different noise types use specialized algorithms for optimal results
- Processing time varies with audio length and noise complexity
- Preserves original audio quality and sample rate
- Works with mono or stereo audio files
"""
try:
# Load audio
audio, sample_rate = _load_audio(audio_path, mono=False)
# Apply noise reduction based on type and sensitivity
if noise_type == "hiss":
# High-pass filter for hiss removal
cutoff = 4000 - sensitivity * 2000 # 2000-4000 Hz range
b, a = butter(4, cutoff, fs=sample_rate, btype="high", output="ba")
if audio.ndim > 1:
filtered_audio = np.zeros_like(audio)
for channel in range(audio.shape[1]):
filtered_audio[:, channel] = filtfilt(b, a, audio[:, channel])
else:
filtered_audio = filtfilt(b, a, audio)
elif noise_type == "hum":
# Multiple notch filters for harmonics
filtered_audio = audio.copy()
fundamental_freqs = [50, 60, 100] # Common power line fundamentals
for fundamental in fundamental_freqs:
if fundamental < sample_rate // 2:
# Filter fundamental and first few harmonics
for harmonic in range(1, 6):
freq = fundamental * harmonic
if freq < sample_rate // 2:
b, a = butter(
2,
[freq * 0.95, freq * 1.05],
fs=sample_rate,
btype="bandstop",
output="ba",
)
if filtered_audio.ndim > 1:
for channel in range(filtered_audio.shape[1]):
filtered_audio[:, channel] = filtfilt(
b, a, filtered_audio[:, channel]
)
else:
filtered_audio = filtfilt(b, a, filtered_audio)
elif noise_type == "rumble":
# High-pass filter for rumble removal
cutoff = 20 + sensitivity * 80 # 20-100 Hz range
b, a = butter(4, cutoff, fs=sample_rate, btype="high", output="ba")
if audio.ndim > 1:
filtered_audio = np.zeros_like(audio)
for channel in range(audio.shape[1]):
filtered_audio[:, channel] = filtfilt(b, a, audio[:, channel])
else:
filtered_audio = filtfilt(b, a, audio)
else: # background or general
# General noise reduction
noise_profile = detect_noise_profile(audio, sample_rate)
filtered_audio = spectral_subtraction(audio, noise_profile, sample_rate)
# Apply based on sensitivity
strength = 0.2 + sensitivity * 0.6
filtered_audio = (1 - strength) * filtered_audio + strength * audio
# Skip normalization to preserve original dynamics and pitch
# Only normalize if clipping would occur
max_val = np.max(np.abs(filtered_audio))
if max_val > 1.0:
filtered_audio = filtered_audio / max_val * 0.95
# Save output
if output_path is None:
output_path = tempfile.mkdtemp(suffix="_noise_removed")
else:
os.makedirs(output_path, exist_ok=True)
# Generate output filename with timestamp
from datetime import datetime
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
input_filename = os.path.splitext(os.path.basename(audio_path))[0]
output_filename = (
f"{input_filename}_{noise_type}_removed_{timestamp}.{output_format}"
)
output_file = os.path.join(output_path, output_filename)
# Save using librosa's output function (most reliable)
# librosa expects (samples, channels) format
audio_for_saving = filtered_audio
try:
# Use librosa to save - this should preserve pitch correctly
sf.write(output_file, audio_for_saving, sample_rate)
print("Successfully saved audio file using librosa/soundfile")
except Exception as e:
print(f"librosa/soundfile failed: {e}")
# Try with FLAC format as fallback
try:
flac_path = output_file.replace(".wav", ".flac")
sf.write(flac_path, audio_for_saving, sample_rate, format="FLAC")
print(f"Successfully saved as FLAC: {flac_path}")
return flac_path
except Exception as e2:
print(f"FLAC also failed: {e2}")
raise RuntimeError("Could not save audio file with any method")
return output_file
except Exception as e:
raise RuntimeError(f"Error removing noise: {str(e)}")
def remove_noise_wrapper(audio_path: str, noise_reduction_factor: float = 0.5) -> str:
"""
Wrapper function for noise removal with error handling for MCP integration.
Args:
audio_path: Path to the input audio file
noise_reduction_factor: Noise reduction strength (0.1-1.0, default: 0.5)
Returns:
Path to cleaned audio file or error message
"""
try:
return remove_noise(audio_path, "general", noise_reduction_factor)
except Exception as e:
return f"Error: {str(e)}"
if __name__ == "__main__":
"""
Script section for running audio cleaning locally.
Usage:
python tools/audio_cleaning.py input.wav
python tools/audio_cleaning.py input.wav --reduction 0.7
"""
import argparse
import sys
parser = argparse.ArgumentParser(
description="Remove noise from audio files",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
python tools/audio_cleaning.py noisy.wav
python tools/audio_cleaning.py noisy.wav --reduction 0.7
python tools/audio_cleaning.py noisy.wav --output cleaned/
""",
)
parser.add_argument("audio_path", help="Path to the input audio file")
parser.add_argument(
"--reduction",
type=float,
default=0.5,
help="Noise reduction factor (0.1-1.0, default: 0.5)",
)
parser.add_argument("--output", help="Output directory (default: output/)")
args = parser.parse_args()
print("Audio Cleaning Tool")
print("=" * 25)
print(f"Input: {args.audio_path}")
print(f"Noise reduction: {args.reduction}")
if args.output:
print(f"Output directory: {args.output}")
print()
try:
result = remove_noise(
audio_path=args.audio_path,
noise_type="general",
sensitivity=args.reduction,
output_path=args.output or "output",
output_format="wav",
)
print("āœ… Audio cleaning completed!")
print(f"Output saved to: {result}")
except Exception as e:
print(f"āŒ Error: {e}")
sys.exit(1)