Spaces:
Sleeping
Sleeping
first commit
Browse files- Config/model_config.json +46 -0
- Dockerfile +44 -0
- docker-compose.yml +11 -0
- librarymed/.DS_Store +0 -0
- librarymed/.gitkeep +1 -0
- librarymed/__init__.py +0 -0
- librarymed/huggingface/DejaVu/DejaVuSansCondensed-Bold.ttf +0 -0
- librarymed/huggingface/DejaVu/DejaVuSansCondensed-Oblique.ttf +0 -0
- librarymed/huggingface/DejaVu/DejaVuSansCondensed.ttf +0 -0
- librarymed/huggingface/DejaVu/readme.txt +40 -0
- librarymed/huggingface/RAG_utils_huggingface.py +995 -0
- librarymed/huggingface/app_huggingface.py +304 -0
- librarymed/kromin/RAG_utils.py +983 -0
- librarymed/kromin/__init__.py +0 -0
- librarymed/kromin/app_librarymed.py +169 -0
- librarymed/local/RAG_utils.py +979 -0
- librarymed/local/__init__.py +0 -0
- librarymed/local/app_local.py +160 -0
- librarymed/local/templates/index.html +187 -0
- librarymed/local/templates/upload_and_results.html +227 -0
- librarymed/main.py +22 -0
- requirements.txt +41 -0
Config/model_config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pdf_processing": {
|
3 |
+
"extract_images": false,
|
4 |
+
"infer_table_structure": true,
|
5 |
+
"strategy": "fast",
|
6 |
+
"chunking_strategy": "by_title",
|
7 |
+
"model_name": "yolox",
|
8 |
+
"max_characters": 10000,
|
9 |
+
"combine_text_under_n_chars": 100
|
10 |
+
},
|
11 |
+
"allowed_extensions": "pdf",
|
12 |
+
"embeddings": "huggingface",
|
13 |
+
"embeddings_model": "BAAI/bge-small-en-v1.5",
|
14 |
+
"llm_model": "gpt-4",
|
15 |
+
"model_temp": 0.2,
|
16 |
+
"max_tokens": 512,
|
17 |
+
"context_window": 5000,
|
18 |
+
"UPLOAD_FOLDER": "../path/to/upload/folder",
|
19 |
+
"GPT_PROMPT_PATH": "data/prompts/prompt_gpt.txt",
|
20 |
+
"MISTRAL_PROMPT_PATH": "data/prompts/prompt_mistral.txt",
|
21 |
+
"INFO_PROMPT_PATH": "data/prompts/prompt_info.txt",
|
22 |
+
"peer_review_journals_path": "data/prompts/peer_review_journals.txt",
|
23 |
+
"eq_network_journals_path": "data/prompts/eq_network_journals.txt",
|
24 |
+
"queries": ["Does the article share any data or code? Look for terms related to supplementary materials or reproducibility.",
|
25 |
+
"Has the study or any data in the article been registered in advance?",
|
26 |
+
"Does the article adhere to specific reporting guidelines such as ISRCTN, CONSORT, PRISMA, MOOSE, STARD, ARRIVE, STROBE, SPIRIT, CARE, AGREE, SRQR, SQUIRE, MDAR, REMARK?",
|
27 |
+
"Is the article's methodology described in detail, including where, when, how, what, and who?",
|
28 |
+
"Are the data collection processes described in detail, including where, when, how, what, and who?",
|
29 |
+
"Does the article provide a detailed description of the sample, including size, demographics, recruitment, and criteria?",
|
30 |
+
"Does the article describe the data analysis process in detail?",
|
31 |
+
"Does the article discuss measures taken to avoid or minimize systematic bias?",
|
32 |
+
"Has the article been published in a journal?"],
|
33 |
+
"criteria": [
|
34 |
+
"Data and code sharing.",
|
35 |
+
"Has anything in the article been registered (in advance)?",
|
36 |
+
"Does the article follow any reporting guidelines?",
|
37 |
+
"Description of methodology",
|
38 |
+
"Data collection processes",
|
39 |
+
"Sample description. eg. size, demographics, recruitment, in-/exclusion criteria",
|
40 |
+
"Data analysis process",
|
41 |
+
"Measures to minimize systematic bias",
|
42 |
+
"Peer Review"],
|
43 |
+
"journal_query": "Is the given research paper published in any of the following journals: {}?",
|
44 |
+
"author_query": "Give me details about the institutions (like university or hospital) and contact details (eg. email) of the corresponding author.",
|
45 |
+
"title_query": "Output title of the paper."
|
46 |
+
}
|
Dockerfile
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official Python image as base image
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
RUN apt-get update && apt-get install -y \
|
5 |
+
python3.10 python3-pip \
|
6 |
+
tesseract-ocr \
|
7 |
+
libtesseract-dev \
|
8 |
+
libgl1-mesa-glx \
|
9 |
+
poppler-utils \
|
10 |
+
&& rm -rf /var/lib/apt/lists/*
|
11 |
+
|
12 |
+
# Set the working directory in the container
|
13 |
+
WORKDIR /app
|
14 |
+
|
15 |
+
# Install system dependencies
|
16 |
+
RUN apt-get update && apt-get install -y libgl1-mesa-glx
|
17 |
+
|
18 |
+
# Copy the dependencies file to the working directory
|
19 |
+
COPY requirements.txt .
|
20 |
+
|
21 |
+
# Install dependencies
|
22 |
+
RUN pip install --trusted-host pypi.python.org -r requirements.txt
|
23 |
+
|
24 |
+
# Copy the content of the local src directory to the working directory
|
25 |
+
COPY . .
|
26 |
+
|
27 |
+
# Create a user to run the application
|
28 |
+
RUN useradd -m -u 1000 user
|
29 |
+
USER user
|
30 |
+
ENV HOME=/home/user \
|
31 |
+
PATH=/home/user/.local/bin:$PATH
|
32 |
+
|
33 |
+
# Set the working directory in the user's home directory
|
34 |
+
WORKDIR $HOME/app
|
35 |
+
COPY --chown=user . $HOME/app
|
36 |
+
|
37 |
+
# Expose the port number on which the Flask app will run
|
38 |
+
EXPOSE 80
|
39 |
+
|
40 |
+
# Define environment variable
|
41 |
+
ENV NAME World
|
42 |
+
|
43 |
+
# Command to run on container start
|
44 |
+
CMD ["python", "librarymed/main.py"]
|
docker-compose.yml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: '3.8'
|
2 |
+
|
3 |
+
services:
|
4 |
+
flask-app:
|
5 |
+
build:
|
6 |
+
context: .
|
7 |
+
dockerfile: Dockerfile
|
8 |
+
volumes:
|
9 |
+
- .:/app
|
10 |
+
ports:
|
11 |
+
- "80:80"
|
librarymed/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
librarymed/.gitkeep
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
librarymed/__init__.py
ADDED
File without changes
|
librarymed/huggingface/DejaVu/DejaVuSansCondensed-Bold.ttf
ADDED
Binary file (632 kB). View file
|
|
librarymed/huggingface/DejaVu/DejaVuSansCondensed-Oblique.ttf
ADDED
Binary file (576 kB). View file
|
|
librarymed/huggingface/DejaVu/DejaVuSansCondensed.ttf
ADDED
Binary file (644 kB). View file
|
|
librarymed/huggingface/DejaVu/readme.txt
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Congratulations, you have successfully downloaded font file!
|
2 |
+
|
3 |
+
This font is provided to you by Fonts2u.com – the largest online
|
4 |
+
repository of free fonts for Windows and Mac.
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
How to install this font on your computer?
|
9 |
+
|
10 |
+
For Windows 7 / Vista users:
|
11 |
+
|
12 |
+
- Right-click the font file(s) and choose "Install".
|
13 |
+
|
14 |
+
For users of the previous Windows versions:
|
15 |
+
|
16 |
+
- Copy the included file(s) into a default Windows font folder
|
17 |
+
(usually C:\WINDOWS\FONTS or C:\WINNT\FONTS)
|
18 |
+
|
19 |
+
For Mac users:
|
20 |
+
|
21 |
+
Mac OS X 10.3 or above (including the FontBook)
|
22 |
+
|
23 |
+
- Double-click the font file and hit "Install font" button at
|
24 |
+
the bottom of the preview.
|
25 |
+
|
26 |
+
Mac OS X
|
27 |
+
|
28 |
+
- Either copy the font file(s) to /Library/Fonts (for all users),
|
29 |
+
or to /Users/Your_username/Library/Fonts (for you only).
|
30 |
+
|
31 |
+
Mac OS 9 or earlier
|
32 |
+
|
33 |
+
- You have to convert the font file(s) you have downloaded.
|
34 |
+
Drag the font suitcases into the System folder. The system
|
35 |
+
will propose you to add them to the Fonts folder.
|
36 |
+
|
37 |
+
For Linux users:
|
38 |
+
|
39 |
+
- Copy the font file(s) to /USR/SHARE/FONTS
|
40 |
+
|
librarymed/huggingface/RAG_utils_huggingface.py
ADDED
@@ -0,0 +1,995 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
|
6 |
+
import openai
|
7 |
+
import logging
|
8 |
+
import asyncio
|
9 |
+
import aiohttp
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import evaluate
|
13 |
+
import qdrant_client
|
14 |
+
from pypdf import PdfReader
|
15 |
+
from pydantic import BaseModel, Field
|
16 |
+
from typing import Any, List, Tuple, Set, Dict, Optional, Union
|
17 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
18 |
+
|
19 |
+
from unstructured.partition.pdf import partition_pdf
|
20 |
+
|
21 |
+
import llama_index
|
22 |
+
from llama_index import PromptTemplate
|
23 |
+
from llama_index.retrievers import VectorIndexRetriever, BaseRetriever, BM25Retriever
|
24 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
25 |
+
from llama_index import get_response_synthesizer
|
26 |
+
from llama_index.schema import NodeWithScore
|
27 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
28 |
+
from llama_index import VectorStoreIndex, ServiceContext
|
29 |
+
from llama_index.embeddings import OpenAIEmbedding
|
30 |
+
from llama_index.llms import HuggingFaceLLM
|
31 |
+
import requests
|
32 |
+
from llama_index.llms import (
|
33 |
+
CustomLLM,
|
34 |
+
CompletionResponse,
|
35 |
+
CompletionResponseGen,
|
36 |
+
LLMMetadata,
|
37 |
+
)
|
38 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
39 |
+
from llama_index.llms.base import llm_completion_callback
|
40 |
+
from llama_index.vector_stores.qdrant import QdrantVectorStore
|
41 |
+
from llama_index.storage.storage_context import StorageContext
|
42 |
+
from llama_index.postprocessor import SentenceTransformerRerank, LLMRerank
|
43 |
+
|
44 |
+
from tempfile import NamedTemporaryFile
|
45 |
+
# Configure basic logging
|
46 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
47 |
+
|
48 |
+
# Create a logger object
|
49 |
+
logger = logging.getLogger(__name__)
|
50 |
+
|
51 |
+
class ConfigManager:
|
52 |
+
"""
|
53 |
+
A class to manage loading and accessing configuration settings.
|
54 |
+
|
55 |
+
Attributes:
|
56 |
+
config (dict): Dictionary to hold configuration settings.
|
57 |
+
|
58 |
+
Methods:
|
59 |
+
load_config(config_path: str): Loads the configuration from a given JSON file.
|
60 |
+
get_config_value(key: str): Retrieves a specific configuration value.
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(self):
|
64 |
+
self.configs = {}
|
65 |
+
|
66 |
+
def load_config(self, config_name: str, config_path: str) -> None:
|
67 |
+
"""
|
68 |
+
Loads configuration settings from a specified JSON file into a named configuration.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
config_name (str): The name to assign to this set of configurations.
|
72 |
+
config_path (str): The path to the configuration file.
|
73 |
+
|
74 |
+
Raises:
|
75 |
+
FileNotFoundError: If the config file is not found.
|
76 |
+
json.JSONDecodeError: If there is an error parsing the config file.
|
77 |
+
"""
|
78 |
+
try:
|
79 |
+
with open(config_path, 'r') as f:
|
80 |
+
self.configs[config_name] = json.load(f)
|
81 |
+
except FileNotFoundError:
|
82 |
+
logging.error(f"Config file not found at {config_path}")
|
83 |
+
raise
|
84 |
+
except json.JSONDecodeError as e:
|
85 |
+
logging.error(f"Error decoding config file: {e}")
|
86 |
+
raise
|
87 |
+
|
88 |
+
|
89 |
+
def get_config_value(self, config_name: str, key: str) -> str:
|
90 |
+
"""
|
91 |
+
Retrieves a specific configuration value.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
key (str): The key for the configuration setting.
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
str: The value of the configuration setting.
|
98 |
+
|
99 |
+
Raises:
|
100 |
+
ValueError: If the key is not found or is set to a placeholder value.
|
101 |
+
"""
|
102 |
+
value = self.configs.get(config_name, {}).get(key)
|
103 |
+
if value is None or value == "ENTER_YOUR_TOKEN_HERE":
|
104 |
+
raise ValueError(f"Please set your '{key}' in the config.json file.")
|
105 |
+
return value
|
106 |
+
|
107 |
+
class base_utils:
|
108 |
+
"""
|
109 |
+
A utility class providing miscellaneous static methods for processing and analyzing text data,
|
110 |
+
particularly from PDF documents and filenames. This class also includes methods for file operations.
|
111 |
+
|
112 |
+
This class encapsulates the functionality of extracting key information from text, such as scores,
|
113 |
+
reasoning, and IDs, locating specific data within a DataFrame based on an ID extracted from a filename,
|
114 |
+
and reading content from files.
|
115 |
+
|
116 |
+
Attributes:
|
117 |
+
None (This class contains only static methods and does not maintain any state)
|
118 |
+
|
119 |
+
Methods:
|
120 |
+
extract_score_reasoning(text: str) -> Dict[str, Optional[str]]:
|
121 |
+
Extracts a score and reasoning from a given text using regular expressions.
|
122 |
+
|
123 |
+
extract_id_from_filename(filename: str) -> Optional[int]:
|
124 |
+
Extracts an ID from a given filename based on a specified pattern.
|
125 |
+
|
126 |
+
find_row_for_pdf(pdf_filename: str, dataframe: pd.DataFrame) -> Union[pd.Series, str]:
|
127 |
+
Searches for a row in a DataFrame that matches an ID extracted from a PDF filename.
|
128 |
+
|
129 |
+
read_from_file(file_path: str) -> str:
|
130 |
+
Reads the content of a file and returns it as a string.
|
131 |
+
"""
|
132 |
+
|
133 |
+
@staticmethod
|
134 |
+
def read_from_file(file_path: str) -> str:
|
135 |
+
"""
|
136 |
+
Reads the content of a file and returns it as a string.
|
137 |
+
|
138 |
+
Args:
|
139 |
+
file_path (str): The path to the file to be read.
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
str: The content of the file.
|
143 |
+
"""
|
144 |
+
with open(file_path, 'r') as prompt_file:
|
145 |
+
prompt = prompt_file.read()
|
146 |
+
return prompt
|
147 |
+
|
148 |
+
@staticmethod
|
149 |
+
def extract_id_from_filename(filename: str) -> Optional[int]:
|
150 |
+
"""
|
151 |
+
Extracts an ID from a filename, assuming a specific format ('Id_{I}.pdf', where {I} is the ID).
|
152 |
+
|
153 |
+
Args:
|
154 |
+
filename (str): The filename from which to extract the ID.
|
155 |
+
|
156 |
+
Returns:
|
157 |
+
int: The extracted ID as an integer, or None if the pattern is not found.
|
158 |
+
"""
|
159 |
+
# Assuming the file name is in the format 'Id_{I}.pdf', where {I} is the ID
|
160 |
+
match = re.search(r'Id_(\d+).pdf', filename)
|
161 |
+
if match:
|
162 |
+
return int(match.group(1)) # Convert to integer if ID is numeric
|
163 |
+
else:
|
164 |
+
return None
|
165 |
+
|
166 |
+
@staticmethod
|
167 |
+
def extract_score_reasoning(text: str) -> Dict[str, Optional[str]]:
|
168 |
+
"""
|
169 |
+
Extracts score and the longest reasoning from a given text using regular expressions.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
text (str): The text from which to extract the score and reasoning.
|
173 |
+
|
174 |
+
Returns:
|
175 |
+
dict: A dictionary containing 'score' and 'reasoning', extracted from the text.
|
176 |
+
"""
|
177 |
+
# Define regular expression patterns for score and reasoning
|
178 |
+
score_pattern = r"Score: (\d+)"
|
179 |
+
reasoning_pattern = r"Reasoning: (\S.+)"
|
180 |
+
|
181 |
+
# Extract score using regular expressions
|
182 |
+
score_match = re.search(score_pattern, text)
|
183 |
+
|
184 |
+
# Extract all reasoning matches
|
185 |
+
reasoning_matches = re.findall(reasoning_pattern, text, re.DOTALL)
|
186 |
+
|
187 |
+
# Find the longest reasoning match
|
188 |
+
longest_reasoning = min(reasoning_matches, key=len) if reasoning_matches else None
|
189 |
+
|
190 |
+
# Extract and return the results
|
191 |
+
extracted_data = {
|
192 |
+
"score": score_match.group(1) if score_match else None,
|
193 |
+
"reasoning": longest_reasoning.strip() if longest_reasoning else None
|
194 |
+
}
|
195 |
+
|
196 |
+
return extracted_data
|
197 |
+
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def find_row_for_pdf(pdf_filename: str, dataframe: pd.DataFrame) -> Union[pd.Series, str]:
|
201 |
+
"""
|
202 |
+
Finds the row in a dataframe corresponding to the ID extracted from a given PDF filename.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
pdf_filename (str): The filename of the PDF.
|
206 |
+
dataframe (pandas.DataFrame): The dataframe in which to find the corresponding row.
|
207 |
+
|
208 |
+
Returns:
|
209 |
+
pandas.Series or str: The matched row from the dataframe or a message indicating
|
210 |
+
that no matching row or invalid filename was found.
|
211 |
+
"""
|
212 |
+
pdf_id = Utility.extract_id_from_filename(pdf_filename)
|
213 |
+
if pdf_id is not None:
|
214 |
+
# Assuming the first column contains the ID
|
215 |
+
matched_row = dataframe[dataframe.iloc[:, 0] == pdf_id]
|
216 |
+
if not matched_row.empty:
|
217 |
+
return matched_row
|
218 |
+
else:
|
219 |
+
return "No matching row found."
|
220 |
+
else:
|
221 |
+
return "Invalid file name."
|
222 |
+
|
223 |
+
|
224 |
+
class PDFProcessor_Unstructured:
|
225 |
+
"""
|
226 |
+
A class to process PDF files, providing functionalities for extracting, categorizing,
|
227 |
+
and merging elements from a PDF file.
|
228 |
+
|
229 |
+
This class is designed to handle unstructured PDF documents, particularly useful for
|
230 |
+
tasks involving text extraction, categorization, and data processing within PDFs.
|
231 |
+
|
232 |
+
Attributes:
|
233 |
+
file_path (str): The full path to the PDF file.
|
234 |
+
folder_path (str): The directory path where the PDF file is located.
|
235 |
+
file_name (str): The name of the PDF file.
|
236 |
+
texts (List[str]): A list to store extracted text chunks.
|
237 |
+
tables (List[str]): A list to store extracted tables.
|
238 |
+
|
239 |
+
|
240 |
+
Methods:
|
241 |
+
extract_pdf_elements() -> List:
|
242 |
+
Extracts images, tables, and text chunks from a PDF file.
|
243 |
+
|
244 |
+
categorize_elements(raw_pdf_elements: List) -> None:
|
245 |
+
Categorizes extracted elements from a PDF into tables and texts.
|
246 |
+
|
247 |
+
merge_chunks() -> List[str]:
|
248 |
+
Merges text chunks based on punctuation and character case criteria.
|
249 |
+
|
250 |
+
should_skip_chunk(chunk: str) -> bool:
|
251 |
+
Determines if a chunk should be skipped based on its content.
|
252 |
+
|
253 |
+
should_merge_with_next(current_chunk: str, next_chunk: str) -> bool:
|
254 |
+
Determines if the current chunk should be merged with the next one.
|
255 |
+
|
256 |
+
process_pdf() -> Tuple[List[str], List[str]]:
|
257 |
+
Processes the PDF by extracting, categorizing, and merging elements.
|
258 |
+
|
259 |
+
process_pdf_file(uploaded_file) -> Tuple[List[str], List[str]]:
|
260 |
+
Processes an uploaded PDF file to extract and categorize text and tables.
|
261 |
+
"""
|
262 |
+
|
263 |
+
def __init__(self, config: Dict[str, any]):
|
264 |
+
self.file_path = None
|
265 |
+
self.folder_path = None
|
266 |
+
self.file_name = None
|
267 |
+
self.texts = []
|
268 |
+
self.tables = []
|
269 |
+
self.config = config if config is not None else self.default_config()
|
270 |
+
logger.info(f"Initialized PdfProcessor_Unstructured for file: {self.file_name}")
|
271 |
+
|
272 |
+
@staticmethod
|
273 |
+
def default_config() -> Dict[str, any]:
|
274 |
+
"""
|
275 |
+
Returns the default configuration for PDF processing.
|
276 |
+
|
277 |
+
Returns:
|
278 |
+
Dict[str, any]: Default configuration options.
|
279 |
+
"""
|
280 |
+
return {
|
281 |
+
"extract_images": False,
|
282 |
+
"infer_table_structure": True,
|
283 |
+
"chunking_strategy": "by_title",
|
284 |
+
"max_characters": 10000,
|
285 |
+
"combine_text_under_n_chars": 100,
|
286 |
+
"strategy": "fast",
|
287 |
+
"model_name": "yolox"
|
288 |
+
}
|
289 |
+
|
290 |
+
|
291 |
+
def extract_pdf_elements(self) -> List:
|
292 |
+
"""
|
293 |
+
Extracts images, tables, and text chunks from a PDF file.
|
294 |
+
|
295 |
+
Returns:
|
296 |
+
List: A list of extracted elements from the PDF.
|
297 |
+
"""
|
298 |
+
logger.info("Starting extraction of PDF elements.")
|
299 |
+
try:
|
300 |
+
extracted_elements = partition_pdf(
|
301 |
+
filename=self.file_path,
|
302 |
+
extract_images_in_pdf=False,
|
303 |
+
infer_table_structure=True,
|
304 |
+
chunking_strategy="by_title",
|
305 |
+
strategy = "fast",
|
306 |
+
max_characters=10000,
|
307 |
+
combine_text_under_n_chars=100,
|
308 |
+
image_output_dir_path=self.folder_path,
|
309 |
+
)
|
310 |
+
logger.info("Extraction of PDF elements completed successfully.")
|
311 |
+
return extracted_elements
|
312 |
+
except Exception as e:
|
313 |
+
logger.error(f"Error extracting PDF elements: {e}", exc_info=True)
|
314 |
+
raise
|
315 |
+
|
316 |
+
def categorize_elements(self, raw_pdf_elements: List) -> None:
|
317 |
+
"""
|
318 |
+
Categorizes extracted elements from a PDF into tables and texts.
|
319 |
+
|
320 |
+
Args:
|
321 |
+
raw_pdf_elements (List): A list of elements extracted from the PDF.
|
322 |
+
"""
|
323 |
+
logger.debug("Starting categorization of PDF elements.")
|
324 |
+
for element in raw_pdf_elements:
|
325 |
+
element_type = str(type(element))
|
326 |
+
if "unstructured.documents.elements.Table" in element_type:
|
327 |
+
self.tables.append(str(element))
|
328 |
+
elif "unstructured.documents.elements.CompositeElement" in element_type:
|
329 |
+
self.texts.append(str(element))
|
330 |
+
|
331 |
+
logger.debug("Categorization of PDF elements completed.")
|
332 |
+
|
333 |
+
def merge_chunks(self) -> List[str]:
|
334 |
+
"""
|
335 |
+
Merges text chunks based on punctuation and character case criteria.
|
336 |
+
|
337 |
+
Returns:
|
338 |
+
List[str]: A list of merged text chunks.
|
339 |
+
"""
|
340 |
+
logger.debug("Starting merging of text chunks.")
|
341 |
+
|
342 |
+
merged_chunks = []
|
343 |
+
skip_next = False
|
344 |
+
|
345 |
+
for i, current_chunk in enumerate(self.texts[:-1]):
|
346 |
+
next_chunk = self.texts[i + 1]
|
347 |
+
|
348 |
+
if self.should_skip_chunk(current_chunk):
|
349 |
+
continue
|
350 |
+
|
351 |
+
if self.should_merge_with_next(current_chunk, next_chunk):
|
352 |
+
merged_chunks.append(current_chunk + " " + next_chunk)
|
353 |
+
skip_next = True
|
354 |
+
else:
|
355 |
+
merged_chunks.append(current_chunk)
|
356 |
+
|
357 |
+
if not skip_next:
|
358 |
+
merged_chunks.append(self.texts[-1])
|
359 |
+
|
360 |
+
logger.debug("Merging of text chunks completed.")
|
361 |
+
|
362 |
+
return merged_chunks
|
363 |
+
|
364 |
+
@staticmethod
|
365 |
+
def should_skip_chunk(chunk: str) -> bool:
|
366 |
+
"""
|
367 |
+
Determines if a chunk should be skipped based on its content.
|
368 |
+
|
369 |
+
Args:
|
370 |
+
chunk (str): The text chunk to be evaluated.
|
371 |
+
|
372 |
+
Returns:
|
373 |
+
bool: True if the chunk should be skipped, False otherwise.
|
374 |
+
"""
|
375 |
+
return (chunk.lower().startswith(("figure", "fig", "table")) or
|
376 |
+
not chunk[0].isalnum() or
|
377 |
+
re.match(r'^\d+\.', chunk))
|
378 |
+
|
379 |
+
@staticmethod
|
380 |
+
def should_merge_with_next(current_chunk: str, next_chunk: str) -> bool:
|
381 |
+
"""
|
382 |
+
Determines if the current chunk should be merged with the next one.
|
383 |
+
|
384 |
+
Args:
|
385 |
+
current_chunk (str): The current text chunk.
|
386 |
+
next_chunk (str): The next text chunk.
|
387 |
+
|
388 |
+
Returns:
|
389 |
+
bool: True if the chunks should be merged, False otherwise.
|
390 |
+
"""
|
391 |
+
return (current_chunk.endswith(",") or
|
392 |
+
(current_chunk[-1].islower() and next_chunk[0].islower()))
|
393 |
+
|
394 |
+
def extract_title_from_pdf(self, uploaded_file):
|
395 |
+
"""
|
396 |
+
Extracts the title from a PDF file's metadata.
|
397 |
+
|
398 |
+
This function reads the metadata of a PDF file using PyPDF2 and attempts to
|
399 |
+
extract the title. If the title is present in the metadata, it is returned.
|
400 |
+
Otherwise, a default message indicating that the title was not found is returned.
|
401 |
+
|
402 |
+
Parameters:
|
403 |
+
uploaded_file (file): A file object or a path to the PDF file from which
|
404 |
+
to extract the title. The file must be opened in binary mode.
|
405 |
+
|
406 |
+
Returns:
|
407 |
+
str: The title of the PDF file as a string. If no title is found, returns
|
408 |
+
'Title not found'.
|
409 |
+
"""
|
410 |
+
# Initialize PDF reader
|
411 |
+
pdf_reader = PdfReader(uploaded_file)
|
412 |
+
|
413 |
+
# Extract document information
|
414 |
+
meta = pdf_reader.metadata
|
415 |
+
|
416 |
+
# Retrieve title from document information
|
417 |
+
title = meta.title if meta and meta.title else 'Title not found'
|
418 |
+
return title
|
419 |
+
|
420 |
+
def process_pdf(self) -> Tuple[List[str], List[str]]:
|
421 |
+
"""
|
422 |
+
Processes the PDF by extracting, categorizing, and merging elements.
|
423 |
+
|
424 |
+
Returns:
|
425 |
+
Tuple[List[str], List[str]]: A tuple of merged text chunks and tables.
|
426 |
+
"""
|
427 |
+
logger.info("Starting processing of the PDF.")
|
428 |
+
try:
|
429 |
+
raw_pdf_elements = self.extract_pdf_elements()
|
430 |
+
self.categorize_elements(raw_pdf_elements)
|
431 |
+
merged_chunks = self.merge_chunks()
|
432 |
+
return merged_chunks, self.tables
|
433 |
+
except Exception as e:
|
434 |
+
logger.error(f"Error processing PDF: {e}", exc_info=True)
|
435 |
+
raise
|
436 |
+
|
437 |
+
def process_pdf_file(self, uploaded_file):
|
438 |
+
"""
|
439 |
+
Process an uploaded PDF file.
|
440 |
+
|
441 |
+
If a new file is uploaded, the previously stored file is deleted.
|
442 |
+
The method updates the file path, processes the PDF, and returns the results.
|
443 |
+
|
444 |
+
Parameters:
|
445 |
+
uploaded_file: The new PDF file uploaded for processing.
|
446 |
+
|
447 |
+
Returns:
|
448 |
+
The results of processing the PDF file.
|
449 |
+
"""
|
450 |
+
# Delete the previous file if it exists
|
451 |
+
if self.file_path and os.path.exists(self.file_path):
|
452 |
+
try:
|
453 |
+
os.remove(self.file_path)
|
454 |
+
logging.debug(f"Previous file {self.file_path} deleted.")
|
455 |
+
except Exception as e:
|
456 |
+
logging.warning(f"Error deleting previous file: {e}", exc_info=True)
|
457 |
+
|
458 |
+
# Process the new file
|
459 |
+
self.file_path = str(uploaded_file)
|
460 |
+
self.folder_path = os.path.dirname(self.file_path)
|
461 |
+
logging.info(f"Starting to process the PDF file: {self.file_path}")
|
462 |
+
|
463 |
+
try:
|
464 |
+
logging.debug(f"Processing PDF at {self.file_path}")
|
465 |
+
results = self.process_pdf()
|
466 |
+
title = self.extract_title_from_pdf(self.file_path)
|
467 |
+
logging.info("PDF processing completed successfully.")
|
468 |
+
return (*results, title)
|
469 |
+
except Exception as e:
|
470 |
+
logging.error(f"Error processing PDF file: {e}", exc_info=True)
|
471 |
+
raise
|
472 |
+
|
473 |
+
|
474 |
+
class HybridRetriever(BaseRetriever):
|
475 |
+
"""
|
476 |
+
A hybrid retriever that combines results from vector-based and BM25 retrieval methods.
|
477 |
+
Inherits from BaseRetriever.
|
478 |
+
|
479 |
+
This class uses two different retrieval methods and merges their results to provide a
|
480 |
+
comprehensive set of documents in response to a query. It ensures diversity in the
|
481 |
+
retrieved documents by leveraging the strengths of both retrieval methods.
|
482 |
+
|
483 |
+
Attributes:
|
484 |
+
vector_retriever: An instance of a vector-based retriever.
|
485 |
+
bm25_retriever: An instance of a BM25 retriever.
|
486 |
+
|
487 |
+
Methods:
|
488 |
+
__init__(vector_retriever, bm25_retriever): Initializes the HybridRetriever with vector and BM25 retrievers.
|
489 |
+
_retrieve(query, **kwargs): Performs the retrieval operation by combining results from both retrievers.
|
490 |
+
_combine_results(bm25_nodes, vector_nodes): Combines and de-duplicates the results from both retrievers.
|
491 |
+
"""
|
492 |
+
|
493 |
+
def __init__(self, vector_retriever, bm25_retriever):
|
494 |
+
super().__init__()
|
495 |
+
self.vector_retriever = vector_retriever
|
496 |
+
self.bm25_retriever = bm25_retriever
|
497 |
+
logger.info("HybridRetriever initialized with vector and BM25 retrievers.")
|
498 |
+
|
499 |
+
def _retrieve(self, query: str, **kwargs) -> List:
|
500 |
+
"""
|
501 |
+
Retrieves and combines results from both vector and BM25 retrievers.
|
502 |
+
|
503 |
+
Args:
|
504 |
+
query: The query string for document retrieval.
|
505 |
+
**kwargs: Additional keyword arguments for retrieval.
|
506 |
+
|
507 |
+
Returns:
|
508 |
+
List: Combined list of unique nodes retrieved from both methods.
|
509 |
+
"""
|
510 |
+
logger.info(f"Retrieving documents for query: {query}")
|
511 |
+
try:
|
512 |
+
bm25_nodes = self.bm25_retriever.retrieve(query, **kwargs)
|
513 |
+
vector_nodes = self.vector_retriever.retrieve(query, **kwargs)
|
514 |
+
combined_nodes = self._combine_results(bm25_nodes, vector_nodes)
|
515 |
+
|
516 |
+
logger.info(f"Retrieved {len(combined_nodes)} unique nodes combining vector and BM25 retrievers.")
|
517 |
+
return combined_nodes
|
518 |
+
except Exception as e:
|
519 |
+
logger.error(f"Error in retrieval: {e}")
|
520 |
+
raise
|
521 |
+
|
522 |
+
@staticmethod
|
523 |
+
def _combine_results(bm25_nodes: List, vector_nodes: List) -> List:
|
524 |
+
"""
|
525 |
+
Combines and de-duplicates results from BM25 and vector retrievers.
|
526 |
+
|
527 |
+
Args:
|
528 |
+
bm25_nodes: Nodes retrieved from BM25 retriever.
|
529 |
+
vector_nodes: Nodes retrieved from vector retriever.
|
530 |
+
|
531 |
+
Returns:
|
532 |
+
List: Combined list of unique nodes.
|
533 |
+
"""
|
534 |
+
node_ids: Set = set()
|
535 |
+
combined_nodes = []
|
536 |
+
|
537 |
+
for node in bm25_nodes + vector_nodes:
|
538 |
+
if node.node_id not in node_ids:
|
539 |
+
combined_nodes.append(node)
|
540 |
+
node_ids.add(node.node_id)
|
541 |
+
|
542 |
+
return combined_nodes
|
543 |
+
|
544 |
+
|
545 |
+
|
546 |
+
class PDFQueryEngine:
|
547 |
+
"""
|
548 |
+
A class to handle the process of setting up a query engine and performing queries on PDF documents.
|
549 |
+
|
550 |
+
This class encapsulates the functionality of creating prompt templates, embedding models, service contexts,
|
551 |
+
indexes, hybrid retrievers, response synthesizers, and executing queries on the set up engine.
|
552 |
+
|
553 |
+
Attributes:
|
554 |
+
documents (List): A list of documents to be indexed.
|
555 |
+
llm (Language Model): The language model to be used for embeddings and queries.
|
556 |
+
qa_prompt_tmpl (str): Template for creating query prompts.
|
557 |
+
queries (List[str]): List of queries to be executed.
|
558 |
+
|
559 |
+
Methods:
|
560 |
+
setup_query_engine(): Sets up the query engine with all necessary components.
|
561 |
+
execute_queries(): Executes the predefined queries and prints the results.
|
562 |
+
"""
|
563 |
+
|
564 |
+
def __init__(self, documents: List[Any], llm: Any, embed_model: Any, qa_prompt_tmpl: Any):
|
565 |
+
|
566 |
+
self.documents = documents
|
567 |
+
self.llm = llm
|
568 |
+
self.embed_model = embed_model
|
569 |
+
self.qa_prompt_tmpl = qa_prompt_tmpl
|
570 |
+
self.base_utils = base_utils()
|
571 |
+
self.config_manager = ConfigManager()
|
572 |
+
|
573 |
+
|
574 |
+
|
575 |
+
logger.info("PDFQueryEngine initialized.")
|
576 |
+
|
577 |
+
def format_example(self, example):
|
578 |
+
"""
|
579 |
+
Formats a few-shot example into a string.
|
580 |
+
|
581 |
+
Args:
|
582 |
+
example (dict): A dictionary containing 'query', 'score', and 'reasoning' for the few-shot example.
|
583 |
+
|
584 |
+
Returns:
|
585 |
+
str: Formatted few-shot example text.
|
586 |
+
"""
|
587 |
+
return "Example:\nQuery: {}\nScore: {}\nReasoning: {}\n".format(
|
588 |
+
example['query'], example['score'], example['reasoning']
|
589 |
+
)
|
590 |
+
|
591 |
+
|
592 |
+
def setup_query_engine(self):
|
593 |
+
"""
|
594 |
+
Sets up the query engine by initializing and configuring the embedding model, service context, index,
|
595 |
+
hybrid retriever (combining vector and BM25 retrievers), and the response synthesizer.
|
596 |
+
|
597 |
+
Args:
|
598 |
+
embed_model: The embedding model to be used.
|
599 |
+
service_context: The context for providing services to the query engine.
|
600 |
+
index: The index used for storing and retrieving documents.
|
601 |
+
hybrid_retriever: The retriever that combines vector and BM25 retrieval methods.
|
602 |
+
response_synthesizer: The synthesizer for generating responses to queries.
|
603 |
+
|
604 |
+
Returns:
|
605 |
+
Any: The configured query engine.
|
606 |
+
"""
|
607 |
+
client = qdrant_client.QdrantClient(
|
608 |
+
# you can use :memory: mode for fast and light-weight experiments,
|
609 |
+
# it does not require to have Qdrant deployed anywhere
|
610 |
+
# but requires qdrant-client >= 1.1.1
|
611 |
+
location=":memory:"
|
612 |
+
# otherwise set Qdrant instance address with:
|
613 |
+
# uri="http://<host>:<port>"
|
614 |
+
# set API KEY for Qdrant Cloud
|
615 |
+
# api_key="<qdrant-api-key>",
|
616 |
+
)
|
617 |
+
try:
|
618 |
+
logger.info("Initializing the service context for query engine setup.")
|
619 |
+
service_context = ServiceContext.from_defaults(llm=self.llm, embed_model=self.embed_model)
|
620 |
+
vector_store = QdrantVectorStore(client=client, collection_name="med_library")
|
621 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
622 |
+
|
623 |
+
logger.info("Creating an index from documents.")
|
624 |
+
index = VectorStoreIndex.from_documents(documents=self.documents, storage_context=storage_context, service_context=service_context)
|
625 |
+
nodes = service_context.node_parser.get_nodes_from_documents(self.documents)
|
626 |
+
|
627 |
+
logger.info("Setting up vector and BM25 retrievers.")
|
628 |
+
vector_retriever = index.as_retriever(similarity_top_k=3)
|
629 |
+
bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=3)
|
630 |
+
hybrid_retriever = HybridRetriever(vector_retriever, bm25_retriever)
|
631 |
+
|
632 |
+
logger.info("Configuring the response synthesizer with the prompt template.")
|
633 |
+
qa_prompt = PromptTemplate(self.qa_prompt_tmpl)
|
634 |
+
response_synthesizer = get_response_synthesizer(
|
635 |
+
service_context=service_context,
|
636 |
+
text_qa_template=qa_prompt,
|
637 |
+
response_mode="compact",
|
638 |
+
)
|
639 |
+
|
640 |
+
logger.info("Assembling the query engine with reranker and synthesizer.")
|
641 |
+
reranker = SentenceTransformerRerank(top_n=3, model="BAAI/bge-reranker-base")
|
642 |
+
query_engine = RetrieverQueryEngine.from_args(
|
643 |
+
retriever=hybrid_retriever,
|
644 |
+
node_postprocessors=[reranker],
|
645 |
+
response_synthesizer=response_synthesizer,
|
646 |
+
)
|
647 |
+
|
648 |
+
logger.info("Query engine setup complete.")
|
649 |
+
return query_engine
|
650 |
+
except Exception as e:
|
651 |
+
logger.error(f"Error during query engine setup: {e}")
|
652 |
+
raise
|
653 |
+
|
654 |
+
def evaluate_with_llm(self, reg_result: Any, peer_result: Any, guidelines_result: Any, queries: List[str]) -> Tuple[int, List[int], int, float, List[str]]:
|
655 |
+
"""
|
656 |
+
Evaluate documents using a language model based on various criteria.
|
657 |
+
Args:
|
658 |
+
reg_result (Any): Result related to registration.
|
659 |
+
peer_result (Any): Result related to peer review.
|
660 |
+
guidelines_result (Any): Result related to following guidelines.
|
661 |
+
queries (List[str]): A list of queries to be processed.
|
662 |
+
Returns:
|
663 |
+
Tuple[int, List[int], int, float, List[str]]: A tuple containing the total score, a list of scores per criteria.
|
664 |
+
"""
|
665 |
+
|
666 |
+
logger.info("Starting evaluation with LLM.")
|
667 |
+
self.config_manager.load_config("few_shot", "few_shot.json")
|
668 |
+
query_engine = self.setup_query_engine()
|
669 |
+
|
670 |
+
total_score = 0
|
671 |
+
criteria_met = 0
|
672 |
+
reasoning = []
|
673 |
+
|
674 |
+
for j, query in enumerate(queries):
|
675 |
+
# Handle special cases based on the value of j and other conditions
|
676 |
+
if j == 1 and reg_result:
|
677 |
+
extracted_data = {"score": 1, "reasoning": reg_result[0]}
|
678 |
+
elif j == 2 and guidelines_result:
|
679 |
+
extracted_data = {"score": 1, "reasoning": "The article is published in a journal following EQUATOR-NETWORK reporting guidelines"}
|
680 |
+
elif j == 8 and (guidelines_result or peer_result):
|
681 |
+
extracted_data = {"score": 1, "reasoning": "The article is published in a peer-reviewed journal."}
|
682 |
+
else:
|
683 |
+
|
684 |
+
# Execute the query
|
685 |
+
result = query_engine.query(query).response
|
686 |
+
extracted_data = self.base_utils.extract_score_reasoning(result)
|
687 |
+
|
688 |
+
|
689 |
+
# Validate and accumulate the scores
|
690 |
+
extracted_data_score = 0 if extracted_data.get("score") is None else int(extracted_data.get("score"))
|
691 |
+
if extracted_data_score > 0:
|
692 |
+
criteria_met += 1
|
693 |
+
reasoning.append(extracted_data["reasoning"])
|
694 |
+
total_score += extracted_data_score
|
695 |
+
|
696 |
+
score_percentage = (float(total_score) / len(queries)) * 100
|
697 |
+
logger.info("Evaluation completed.")
|
698 |
+
return total_score, criteria_met, score_percentage, reasoning
|
699 |
+
|
700 |
+
|
701 |
+
|
702 |
+
class MixtralLLM(CustomLLM):
|
703 |
+
"""
|
704 |
+
A custom language model class for interfacing with the Hugging Face API, specifically using the Mixtral model.
|
705 |
+
|
706 |
+
Attributes:
|
707 |
+
context_window (int): Number of tokens used for context during inference.
|
708 |
+
num_output (int): Number of tokens to generate as output.
|
709 |
+
temperature (float): Sampling temperature for token generation.
|
710 |
+
model_name (str): Name of the model on Hugging Face's model hub.
|
711 |
+
api_key (str): API key for authenticating with the Hugging Face API.
|
712 |
+
|
713 |
+
Methods:
|
714 |
+
metadata: Retrieves metadata about the model.
|
715 |
+
do_hf_call: Makes an API call to the Hugging Face model.
|
716 |
+
complete: Generates a complete response for a given prompt.
|
717 |
+
stream_complete: Streams a series of token completions for a given prompt.
|
718 |
+
"""
|
719 |
+
context_window: int = Field(..., description="Number of tokens used for context during inference.")
|
720 |
+
num_output: int = Field(..., description="Number of tokens to generate as output.")
|
721 |
+
temperature: float = Field(..., description="Sampling temperature for token generation.")
|
722 |
+
model_name: str = Field(..., description="Name of the model on Hugging Face's model hub.")
|
723 |
+
api_key: str = Field(..., description="API key for authenticating with the Hugging Face API.")
|
724 |
+
|
725 |
+
|
726 |
+
@property
|
727 |
+
def metadata(self) -> LLMMetadata:
|
728 |
+
"""
|
729 |
+
Retrieves metadata for the Mixtral LLM.
|
730 |
+
|
731 |
+
Returns:
|
732 |
+
LLMMetadata: An object containing metadata such as context window, number of outputs, and model name.
|
733 |
+
"""
|
734 |
+
return LLMMetadata(
|
735 |
+
context_window=self.context_window,
|
736 |
+
num_output=self.num_output,
|
737 |
+
model_name=self.model_name,
|
738 |
+
)
|
739 |
+
|
740 |
+
def do_hf_call(self, prompt: str) -> str:
|
741 |
+
"""
|
742 |
+
Makes an API call to the Hugging Face model and retrieves the generated response.
|
743 |
+
|
744 |
+
Args:
|
745 |
+
prompt (str): The input prompt for the model.
|
746 |
+
|
747 |
+
Returns:
|
748 |
+
str: The text generated by the model in response to the prompt.
|
749 |
+
|
750 |
+
Raises:
|
751 |
+
Exception: If the API call fails or returns an error.
|
752 |
+
"""
|
753 |
+
data = {
|
754 |
+
"inputs": prompt,
|
755 |
+
"parameters": {"Temperature": self.temperature}
|
756 |
+
}
|
757 |
+
|
758 |
+
# Makes a POST request to the Hugging Face API to get the model's response
|
759 |
+
response = requests.post(
|
760 |
+
f'https://api-inference.huggingface.co/models/{self.model_name}',
|
761 |
+
headers={
|
762 |
+
'authorization': f'Bearer {self.api_key}',
|
763 |
+
'content-type': 'application/json',
|
764 |
+
},
|
765 |
+
json=data,
|
766 |
+
stream=True
|
767 |
+
)
|
768 |
+
|
769 |
+
# Checks for a successful response and parses the generated text
|
770 |
+
if response.status_code != 200 or not response.json() or 'error' in response.json():
|
771 |
+
print(f"Error: {response}")
|
772 |
+
return "Unable to answer for technical reasons."
|
773 |
+
full_txt = response.json()[0]['generated_text']
|
774 |
+
# Finds the section of the text following the context separator
|
775 |
+
offset = full_txt.find("---------------------")
|
776 |
+
ss = full_txt[offset:]
|
777 |
+
# Extracts the actual answer from the response
|
778 |
+
offset = ss.find("Answer:")
|
779 |
+
return ss[offset+7:].strip()
|
780 |
+
|
781 |
+
|
782 |
+
@llm_completion_callback()
|
783 |
+
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
|
784 |
+
"""
|
785 |
+
Generates a complete response for a given prompt using the Hugging Face API.
|
786 |
+
|
787 |
+
Args:
|
788 |
+
prompt (str): The input prompt for the model.
|
789 |
+
**kwargs: Additional keyword arguments for the completion.
|
790 |
+
|
791 |
+
Returns:
|
792 |
+
CompletionResponse: The complete response from the model.
|
793 |
+
"""
|
794 |
+
response = self.do_hf_call(prompt)
|
795 |
+
return CompletionResponse(text=response)
|
796 |
+
|
797 |
+
|
798 |
+
@llm_completion_callback()
|
799 |
+
def stream_complete(
|
800 |
+
self, prompt: str, **kwargs: Any
|
801 |
+
) -> CompletionResponseGen:
|
802 |
+
"""
|
803 |
+
Streams a series of token completions as a response for the given prompt.
|
804 |
+
|
805 |
+
This method is useful for streaming responses where each token is generated sequentially.
|
806 |
+
|
807 |
+
Args:
|
808 |
+
prompt (str): The input prompt for the model.
|
809 |
+
**kwargs: Additional keyword arguments for the streaming completion.
|
810 |
+
|
811 |
+
Yields:
|
812 |
+
CompletionResponseGen: A generator yielding each token in the completion response.
|
813 |
+
"""
|
814 |
+
# Yields a stream of tokens as the completion response for the given prompt
|
815 |
+
response = ""
|
816 |
+
for token in self.do_hf_call(prompt):
|
817 |
+
response += token
|
818 |
+
yield CompletionResponse(text=response, delta=token)
|
819 |
+
|
820 |
+
|
821 |
+
|
822 |
+
class KeywordSearch():
|
823 |
+
def __init__(self, chunks):
|
824 |
+
self.chunks = chunks
|
825 |
+
|
826 |
+
def find_journal_name(self, response: str, journal_list: list) -> str:
|
827 |
+
"""
|
828 |
+
Searches for a journal name in a given response string.
|
829 |
+
|
830 |
+
This function iterates through a list of known journal names and checks if any of these
|
831 |
+
names are present in the response string. It returns the first journal name found in the
|
832 |
+
response. If no journal names from the list are found in the response, a default message
|
833 |
+
indicating that the journal name was not found is returned.
|
834 |
+
|
835 |
+
Args:
|
836 |
+
response (str): The response string to search for a journal name.
|
837 |
+
journal_list (list): A list of journal names to search within the response.
|
838 |
+
|
839 |
+
Returns:
|
840 |
+
str: The first journal name found in the response, or a default message if no journal name is found.
|
841 |
+
"""
|
842 |
+
response_lower = response.lower()
|
843 |
+
for journal in journal_list:
|
844 |
+
journal_lower = journal.lower()
|
845 |
+
|
846 |
+
if journal_lower in response_lower:
|
847 |
+
return True
|
848 |
+
|
849 |
+
return False
|
850 |
+
|
851 |
+
def check_registration(self):
|
852 |
+
"""
|
853 |
+
Check chunks of text for various registration numbers or URLs of registries.
|
854 |
+
Returns the sentence containing a registration number, or if not found,
|
855 |
+
returns chunks containing registry URLs.
|
856 |
+
|
857 |
+
Args:
|
858 |
+
chunks (list of str): List of text chunks to search.
|
859 |
+
|
860 |
+
Returns:
|
861 |
+
list of str: List of matching sentences or chunks, or an empty list if no matches are found.
|
862 |
+
"""
|
863 |
+
|
864 |
+
# Patterns for different registration types
|
865 |
+
patterns = {
|
866 |
+
"NCT": r"\(?(NCT#?\s*(No\s*)?)(\d{8})\)?",
|
867 |
+
"ISRCTN": r"(ISRCTN\d{8})",
|
868 |
+
"EudraCT": r"(\d{4}-\d{6}-\d{2})",
|
869 |
+
"UMIN-CTR": r"(UMIN\d{9})",
|
870 |
+
"CTRI": r"(CTRI/\d{4}/\d{2}/\d{6})"
|
871 |
+
}
|
872 |
+
|
873 |
+
# Registry URLs
|
874 |
+
registry_urls = [
|
875 |
+
"www.anzctr.org.au",
|
876 |
+
"anzctr.org.au",
|
877 |
+
"www.clinicaltrials.gov",
|
878 |
+
"clinicaltrials.gov",
|
879 |
+
"www.ISRCTN.org",
|
880 |
+
"ISRCTN.org",
|
881 |
+
"www.umin.ac.jp/ctr/index/htm",
|
882 |
+
"umin.ac.jp/ctr/index/htm",
|
883 |
+
"www.onderzoekmetmensen.nl/en",
|
884 |
+
"onderzoekmetmensen.nl/en",
|
885 |
+
"eudract.ema.europa.eu",
|
886 |
+
"www.eudract.ema.europa.eu"
|
887 |
+
]
|
888 |
+
|
889 |
+
|
890 |
+
# Check each chunk for registration numbers
|
891 |
+
for chunk in self.chunks:
|
892 |
+
# Split chunk into sentences
|
893 |
+
sentences = re.split(r'(?<=[.!?]) +', chunk)
|
894 |
+
|
895 |
+
# Check each sentence for any registration number
|
896 |
+
for sentence in sentences:
|
897 |
+
for pattern in patterns.values():
|
898 |
+
if re.search(pattern, sentence):
|
899 |
+
return [sentence] # Return immediately if a registration number is found
|
900 |
+
|
901 |
+
# If no registration number found, check for URLs in chunks
|
902 |
+
matching_chunks = []
|
903 |
+
for chunk in self.chunks:
|
904 |
+
if any(url in chunk for url in registry_urls):
|
905 |
+
matching_chunks.append(chunk)
|
906 |
+
|
907 |
+
return matching_chunks
|
908 |
+
|
909 |
+
|
910 |
+
|
911 |
+
class StringExtraction():
|
912 |
+
|
913 |
+
"""
|
914 |
+
A class to handle the the process of extraction of query string from complete LLM responses.
|
915 |
+
|
916 |
+
This class encapsulates the functionality of extracting original ground truth from a labelled data csv and query strings from responses. Please note that
|
917 |
+
LLMs may generate different formatted answers based on different models or different prompting technique. In such cases, extract_original_prompt may not give
|
918 |
+
satisfactory results. Best case scenario will be write your own string extraction method in such cases.
|
919 |
+
|
920 |
+
|
921 |
+
Methods:
|
922 |
+
extract_original_prompt():
|
923 |
+
extraction_ground_truth():
|
924 |
+
"""
|
925 |
+
|
926 |
+
def extract_original_prompt(self,result):
|
927 |
+
r1 = result.response.strip().split("\n")
|
928 |
+
binary_response = ""
|
929 |
+
explanation_response = ""
|
930 |
+
for r in r1:
|
931 |
+
if binary_response == "" and (r.find("Yes") >= 0 or r.find("No") >= 0):
|
932 |
+
binary_response = r
|
933 |
+
elif r.find("Reasoning:") >= 0:
|
934 |
+
cut = r.find(":")
|
935 |
+
explanation_response += r[cut+1:].strip()
|
936 |
+
|
937 |
+
return binary_response,explanation_response
|
938 |
+
|
939 |
+
def extraction_ground_truth(self,paper_name,labelled_data):
|
940 |
+
id = int(paper_name[paper_name.find("_")+1:paper_name.find(".pdf")])
|
941 |
+
id_row = labelled_data[labelled_data["id"] == id]
|
942 |
+
ground_truth = id_row.iloc[:,2:11].values.tolist()[0]
|
943 |
+
binary_ground_truth = []
|
944 |
+
explanation_ground_truth = []
|
945 |
+
for g in ground_truth:
|
946 |
+
if len(g) > 0:
|
947 |
+
binary_ground_truth.append("Yes")
|
948 |
+
explanation_ground_truth.append(g)
|
949 |
+
else:
|
950 |
+
binary_ground_truth.append("No")
|
951 |
+
explanation_ground_truth.append("The article does not provide any relevant information.")
|
952 |
+
return binary_ground_truth,explanation_ground_truth
|
953 |
+
|
954 |
+
|
955 |
+
|
956 |
+
class EvaluationMetrics():
|
957 |
+
"""
|
958 |
+
|
959 |
+
This class encapsulates the evaluation methods that have been used in the project.
|
960 |
+
|
961 |
+
Attributes:
|
962 |
+
explanation_response = a list of detailed response from the LLM model corresponding to each query
|
963 |
+
explanation_ground_truth = the list of ground truth corresponding to each query
|
964 |
+
|
965 |
+
Methods:
|
966 |
+
metric_cosine_similairty(): Sets up the query engine with all necessary components.
|
967 |
+
metric_rouge(): Executes the predefined queries and prints the results.
|
968 |
+
metric_binary_accuracy():
|
969 |
+
"""
|
970 |
+
|
971 |
+
|
972 |
+
def __init__(self,explanation_response,explanation_ground_truth,embedding_model):
|
973 |
+
self.explanation_response = explanation_response
|
974 |
+
self.explanation_ground_truth = explanation_ground_truth
|
975 |
+
self.embedding_model = embedding_model
|
976 |
+
|
977 |
+
def metric_cosine_similarity(self):
|
978 |
+
ground_truth_embedding = self.embedding_model.encode(self.explanation_ground_truth)
|
979 |
+
explanation_response_embedding = self.embedding_model.encode(self.explanation_response)
|
980 |
+
return np.diag(cosine_similarity(ground_truth_embedding,explanation_response_embedding))
|
981 |
+
|
982 |
+
def metric_rouge(self):
|
983 |
+
rouge = evaluate.load("rouge")
|
984 |
+
results = rouge.compute(predictions = self.explanation_response,references = self.explanation_ground_truth)
|
985 |
+
return results
|
986 |
+
|
987 |
+
def binary_accuracy(self,binary_response,binary_ground_truth):
|
988 |
+
count = 0
|
989 |
+
if len(binary_response) != len(binary_ground_truth):
|
990 |
+
return "Arrays which are to be compared has different lengths."
|
991 |
+
else:
|
992 |
+
for i in range(len(binary_response)):
|
993 |
+
if binary_response[i] == binary_ground_truth[i]:
|
994 |
+
count += 1
|
995 |
+
return np.round(count/len(binary_response),2)
|
librarymed/huggingface/app_huggingface.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import openai
|
6 |
+
from fpdf import FPDF
|
7 |
+
from llama_index import Document
|
8 |
+
from llama_index.embeddings import OpenAIEmbedding, HuggingFaceEmbedding
|
9 |
+
from llama_index.llms import OpenAI
|
10 |
+
|
11 |
+
from RAG_utils_huggingface import PDFProcessor_Unstructured, PDFQueryEngine, MixtralLLM, KeywordSearch, base_utils, \
|
12 |
+
ConfigManager
|
13 |
+
|
14 |
+
# Configure basic logging
|
15 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
16 |
+
|
17 |
+
# Create a logger object
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
21 |
+
|
22 |
+
config_manager = ConfigManager()
|
23 |
+
# config_manager.load_config("api", "Config/api_config.json")
|
24 |
+
config_manager.load_config("model", "model_config.json")
|
25 |
+
|
26 |
+
openai.api_key = os.environ['OPENAI_API_KEY'] # config_manager.get_config_value("api", "OPENAI_API_KEY")
|
27 |
+
hf_token = os.environ['HF_TOKEN'] # config_manager.get_config_value("api", "HF_TOKEN")
|
28 |
+
|
29 |
+
# PDF rendering and chunking parameters
|
30 |
+
pdf_processing_config = config_manager.get_config_value("model", "pdf_processing")
|
31 |
+
|
32 |
+
ALLOWED_EXTENSIONS = config_manager.get_config_value("model", "allowed_extensions")
|
33 |
+
embed = config_manager.get_config_value("model", "embeddings")
|
34 |
+
embed_model_name = config_manager.get_config_value("model", "embeddings_model")
|
35 |
+
|
36 |
+
# llm_model = config_manager.get_config_value("model", "llm_model")
|
37 |
+
model_temperature = config_manager.get_config_value("model", "model_temp")
|
38 |
+
output_token_size = config_manager.get_config_value("model", "max_tokens")
|
39 |
+
model_context_window = config_manager.get_config_value("model", "context_window")
|
40 |
+
|
41 |
+
gpt_prompt_path = config_manager.get_config_value("model", "GPT_PROMPT_PATH")
|
42 |
+
mistral_prompt_path = config_manager.get_config_value("model", "MISTRAL_PROMPT_PATH")
|
43 |
+
info_prompt_path = config_manager.get_config_value("model", "INFO_PROMPT_PATH")
|
44 |
+
|
45 |
+
peer_review_journals_path = config_manager.get_config_value("model", "peer_review_journals_path")
|
46 |
+
eq_network_journals_path = config_manager.get_config_value("model", "eq_network_journals_path")
|
47 |
+
|
48 |
+
queries = config_manager.get_config_value("model", "queries")
|
49 |
+
criteria = config_manager.get_config_value("model", "criteria")
|
50 |
+
num_criteria = len(queries)
|
51 |
+
|
52 |
+
author_query = config_manager.get_config_value("model", "author_query")
|
53 |
+
journal_query = config_manager.get_config_value("model", "journal_query")
|
54 |
+
|
55 |
+
|
56 |
+
# Helper function to check if the file extension is allowed
|
57 |
+
def allowed_file(filename):
|
58 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
59 |
+
|
60 |
+
|
61 |
+
def generate_score_bar(score, num_criteria):
|
62 |
+
# Convert and round the score from a 9-point scale to a 100-point scale
|
63 |
+
score_out_of_100 = round((score / num_criteria) * 100)
|
64 |
+
|
65 |
+
# Determine the color and text based on the original score
|
66 |
+
if score == 9:
|
67 |
+
color = "#4CAF50" # green
|
68 |
+
text = "Very good"
|
69 |
+
elif score in [7, 8]:
|
70 |
+
color = "#FFEB3B" # yellow
|
71 |
+
text = "Good"
|
72 |
+
elif score in [5, 6]:
|
73 |
+
color = "#FF9800" # orange
|
74 |
+
text = "Ok"
|
75 |
+
elif score in [3, 4]:
|
76 |
+
color = "#F44336" # red
|
77 |
+
text = "Bad"
|
78 |
+
else: # score < 3
|
79 |
+
color = "#800000" # maroon
|
80 |
+
text = "Very bad"
|
81 |
+
|
82 |
+
# Create the HTML for the score bar
|
83 |
+
score_bar_html = f"""
|
84 |
+
<div style="background-color: #ddd; border-radius: 10px; position: relative; height: 20px; width: 100%;">
|
85 |
+
<div style="background-color: {color}; height: 100%; border-radius: 10px; width: {score_out_of_100}%;"></div>
|
86 |
+
</div>
|
87 |
+
<p style="color: {color};">{text}</p> <!-- Display the text -->
|
88 |
+
"""
|
89 |
+
return score_bar_html
|
90 |
+
|
91 |
+
|
92 |
+
class PDF(FPDF):
|
93 |
+
def __init__(self, *args, **kwargs):
|
94 |
+
super().__init__(*args, **kwargs)
|
95 |
+
# Load the DejaVu font files
|
96 |
+
self.add_font('DejaVu', '', 'DejaVuSansCondensed.ttf', uni=True)
|
97 |
+
self.add_font('DejaVu', 'B', 'DejaVuSansCondensed-Bold.ttf', uni=True)
|
98 |
+
self.add_font('DejaVu', 'I', 'DejaVuSansCondensed-Oblique.ttf', uni=True)
|
99 |
+
|
100 |
+
def header(self):
|
101 |
+
self.set_font('DejaVu', 'B', 12)
|
102 |
+
self.cell(0, 10, 'Paper Analysis Report', 0, 1, 'C')
|
103 |
+
|
104 |
+
def footer(self):
|
105 |
+
self.set_y(-15)
|
106 |
+
self.set_font('DejaVu', 'I', 8)
|
107 |
+
self.cell(0, 10, f'Page {self.page_no()}', 0, 0, 'C')
|
108 |
+
|
109 |
+
|
110 |
+
import os
|
111 |
+
|
112 |
+
|
113 |
+
def create_pdf_report(title, author_info, score, criteria, reasoning_list, output_path):
|
114 |
+
pdf = PDF()
|
115 |
+
pdf.add_page()
|
116 |
+
|
117 |
+
# Set margins
|
118 |
+
pdf.set_left_margin(10)
|
119 |
+
pdf.set_right_margin(10)
|
120 |
+
|
121 |
+
# Title
|
122 |
+
pdf.set_font("DejaVu", 'B', 14)
|
123 |
+
pdf.cell(0, 10, "Title:", 0, 1)
|
124 |
+
pdf.set_font("DejaVu", '', 12)
|
125 |
+
pdf.multi_cell(0, 10, title, 0, 1)
|
126 |
+
|
127 |
+
# Author Information
|
128 |
+
pdf.set_font("DejaVu", 'B', 14)
|
129 |
+
pdf.cell(0, 10, "Author Information:", 0, 1)
|
130 |
+
pdf.set_font("DejaVu", '', 12)
|
131 |
+
pdf.multi_cell(0, 10, author_info, 0, 1)
|
132 |
+
|
133 |
+
# Score
|
134 |
+
pdf.set_font("DejaVu", 'B', 14)
|
135 |
+
pdf.cell(0, 10, "Score:", 0, 1)
|
136 |
+
pdf.set_font("DejaVu", '', 12)
|
137 |
+
pdf.multi_cell(0, 10, score, 0, 1)
|
138 |
+
|
139 |
+
# Reasoning - each reasoning with a green heading in bold
|
140 |
+
for heading, reasoning in zip(criteria, reasoning_list):
|
141 |
+
print(reasoning)
|
142 |
+
pdf.set_font("DejaVu", 'B', 14)
|
143 |
+
pdf.set_text_color(0, 128, 0) # Green color
|
144 |
+
pdf.multi_cell(0, 10, heading, 0, 1)
|
145 |
+
pdf.set_text_color(0, 0, 0) # Reset to black color
|
146 |
+
pdf.set_font("DejaVu", '', 12)
|
147 |
+
pdf.multi_cell(0, 10, reasoning, 0, 1)
|
148 |
+
|
149 |
+
# Save the PDF to the specified output path
|
150 |
+
pdf.output(output_path)
|
151 |
+
|
152 |
+
return output_path # Return the path to the generated report
|
153 |
+
|
154 |
+
|
155 |
+
def check_title_for_review(uploaded_files):
|
156 |
+
title_message = "All articles are valid for review."
|
157 |
+
if not uploaded_files:
|
158 |
+
title_message = "No files uploaded or upload canceled."
|
159 |
+
else:
|
160 |
+
for uploaded_file in uploaded_files:
|
161 |
+
pdf_processor = PDFProcessor_Unstructured(pdf_processing_config)
|
162 |
+
title = pdf_processor.extract_title_from_pdf(uploaded_file)
|
163 |
+
if 'review' in title.lower():
|
164 |
+
title_message = "One or more files are review papers. Hence the evaluation may not be accurate."
|
165 |
+
|
166 |
+
return title_message
|
167 |
+
|
168 |
+
|
169 |
+
def process_pdf(uploaded_files, llm_model, n_criteria=num_criteria):
|
170 |
+
# Initialize aggregation variables
|
171 |
+
final_score = 0
|
172 |
+
final_reasoning = []
|
173 |
+
final_score_bar_html = ""
|
174 |
+
final_author_info_html = ""
|
175 |
+
final_title_info_html = ""
|
176 |
+
output_files = []
|
177 |
+
for i, uploaded_file in enumerate(uploaded_files):
|
178 |
+
# Process the PDF file
|
179 |
+
file_name_without_extension = os.path.splitext(os.path.basename(uploaded_file))[0]
|
180 |
+
file_name_without_extension
|
181 |
+
|
182 |
+
pdf_processor = PDFProcessor_Unstructured(pdf_processing_config)
|
183 |
+
merged_chunks, tables, title = pdf_processor.process_pdf_file(uploaded_file)
|
184 |
+
documents = [Document(text=t) for t in merged_chunks]
|
185 |
+
|
186 |
+
# Prompts and Queries
|
187 |
+
utils = base_utils()
|
188 |
+
|
189 |
+
info_prompt = utils.read_from_file(info_prompt_path)
|
190 |
+
|
191 |
+
# LLM Model choice
|
192 |
+
try:
|
193 |
+
if llm_model == "Model 1":
|
194 |
+
llm = OpenAI(model="gpt-4-1106-preview", temperature=model_temperature, max_tokens=output_token_size)
|
195 |
+
general_prompt = utils.read_from_file(gpt_prompt_path)
|
196 |
+
|
197 |
+
elif llm_model == "Model 2":
|
198 |
+
if any(param is None for param in
|
199 |
+
[model_context_window, output_token_size, model_temperature, hf_token]):
|
200 |
+
raise ValueError("All parameters are required for Mistral LLM.")
|
201 |
+
|
202 |
+
llm = MixtralLLM(context_window=model_context_window, num_output=output_token_size,
|
203 |
+
temperature=model_temperature, model_name="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
204 |
+
api_key=hf_token)
|
205 |
+
general_prompt = utils.read_from_file(mistral_prompt_path)
|
206 |
+
else:
|
207 |
+
raise ValueError(f"Unsupported language model: {llm_model}")
|
208 |
+
|
209 |
+
except Exception as e:
|
210 |
+
logger.error(f"Error initializing language model '{llm_model}': {e}", exc_info=True)
|
211 |
+
raise # Or handle the exception as needed
|
212 |
+
|
213 |
+
# Embedding model choice for RAG
|
214 |
+
try:
|
215 |
+
if embed == "openai":
|
216 |
+
embed_model = OpenAIEmbedding(model="text-embedding-3-large")
|
217 |
+
|
218 |
+
elif embed == "huggingface":
|
219 |
+
# Use the specified model name
|
220 |
+
embed_model = HuggingFaceEmbedding(embed_model_name)
|
221 |
+
|
222 |
+
else:
|
223 |
+
raise ValueError(f"Unsupported embedding model: {embed_model}")
|
224 |
+
|
225 |
+
except Exception as e:
|
226 |
+
logger.error(f"Error initializing embedding model: {e}", exc_info=True)
|
227 |
+
raise
|
228 |
+
|
229 |
+
peer_review_journals = utils.read_from_file(peer_review_journals_path)
|
230 |
+
eq_network_journals = utils.read_from_file(eq_network_journals_path)
|
231 |
+
|
232 |
+
peer_review_journals_list = peer_review_journals.split('\n')
|
233 |
+
eq_network_journals_list = eq_network_journals.split('\n')
|
234 |
+
|
235 |
+
modified_journal_query = "Is the given research paper published in any of the following journals: " + ", ".join(
|
236 |
+
peer_review_journals_list) + "?"
|
237 |
+
|
238 |
+
info_llm = OpenAI(model="gpt-4-1106-preview", temperature=model_temperature, max_tokens=100)
|
239 |
+
pdf_info_query = PDFQueryEngine(documents, info_llm, embed_model, (info_prompt))
|
240 |
+
info_query_engine = pdf_info_query.setup_query_engine()
|
241 |
+
journal_result = info_query_engine.query(modified_journal_query).response
|
242 |
+
author_result = info_query_engine.query(author_query).response
|
243 |
+
|
244 |
+
pdf_criteria_query = PDFQueryEngine(documents, llm, embed_model, (general_prompt))
|
245 |
+
|
246 |
+
# Check for prior registration
|
247 |
+
nlp_methods = KeywordSearch(merged_chunks)
|
248 |
+
eq_journal_result = nlp_methods.find_journal_name(journal_result, eq_network_journals_list)
|
249 |
+
peer_journal_result = nlp_methods.find_journal_name(journal_result, peer_review_journals_list)
|
250 |
+
registration_result = nlp_methods.check_registration()
|
251 |
+
|
252 |
+
# Evaluate with OpenAI model
|
253 |
+
total_score, criteria_met, score_percentage, reasoning = pdf_criteria_query.evaluate_with_llm(
|
254 |
+
registration_result, peer_journal_result, eq_journal_result, queries)
|
255 |
+
|
256 |
+
# Convert reasoning list to plain text
|
257 |
+
# reasoning_text = "\n".join([f"{idx + 1}. {reason}" for idx, reason in enumerate(reasoning)])
|
258 |
+
|
259 |
+
# Generate the score bar HTML
|
260 |
+
score_bar_html = generate_score_bar(total_score, n_criteria)
|
261 |
+
scaled_total_score = str(round((total_score / n_criteria) * 100)) + "/100"
|
262 |
+
|
263 |
+
output_dir = "/tmp"
|
264 |
+
base_name = os.path.splitext(uploaded_file)[0]
|
265 |
+
output_path = os.path.join(output_dir, f"{base_name}_report.pdf")
|
266 |
+
|
267 |
+
create_pdf_report(title, author_result, scaled_total_score, criteria, reasoning, output_path)
|
268 |
+
output_files.append(output_path)
|
269 |
+
|
270 |
+
# Construct the processing message
|
271 |
+
processing_message = f"Processing complete. {len(uploaded_files)} reports generated. Please download your reports below."
|
272 |
+
|
273 |
+
return processing_message, output_files
|
274 |
+
# Return the score as a string and the reasoning as HTML
|
275 |
+
# return str(round((total_score / n_criteria) * 100)) + "/100", score_bar_html, reasoning_html, author_info_html, title_info_html
|
276 |
+
|
277 |
+
|
278 |
+
with gr.Blocks(theme=gr.themes.Glass(
|
279 |
+
text_size="sm",
|
280 |
+
font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"],
|
281 |
+
primary_hue="neutral",
|
282 |
+
secondary_hue="gray")) as demo:
|
283 |
+
gr.Markdown("## Med Library")
|
284 |
+
with gr.Row():
|
285 |
+
file_upload = gr.File(label="Choose papers", file_types=['.pdf'], file_count="multiple")
|
286 |
+
|
287 |
+
title_check_output = gr.Textbox(label="Warnings", interactive=False)
|
288 |
+
file_upload.change(fn=check_title_for_review, inputs=file_upload, outputs=title_check_output)
|
289 |
+
|
290 |
+
with gr.Row():
|
291 |
+
model_choice = gr.Dropdown(["Model 1", "Model 2"], label="Choose a model", value="Model 1")
|
292 |
+
submit_button = gr.Button("Evaluate")
|
293 |
+
|
294 |
+
processing_message_output = gr.Textbox(label="Processing Status", interactive=False)
|
295 |
+
report_download_links = gr.File(label="Download Reports", type="filepath", file_count="multiple")
|
296 |
+
|
297 |
+
submit_button.click(
|
298 |
+
fn=process_pdf,
|
299 |
+
inputs=[file_upload, model_choice],
|
300 |
+
outputs=[processing_message_output, report_download_links]
|
301 |
+
)
|
302 |
+
|
303 |
+
|
304 |
+
demo.launch(share=True, server_name="0.0.0.0", server_port=7860)
|
librarymed/kromin/RAG_utils.py
ADDED
@@ -0,0 +1,983 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import time
|
6 |
+
from tempfile import NamedTemporaryFile
|
7 |
+
from typing import Any, List, Tuple, Set, Dict, Optional, Union
|
8 |
+
|
9 |
+
import evaluate
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
import requests
|
13 |
+
from llama_index import PromptTemplate
|
14 |
+
from llama_index import VectorStoreIndex, ServiceContext
|
15 |
+
from llama_index import get_response_synthesizer
|
16 |
+
from llama_index.llms import (
|
17 |
+
CustomLLM,
|
18 |
+
CompletionResponse,
|
19 |
+
CompletionResponseGen,
|
20 |
+
LLMMetadata,
|
21 |
+
)
|
22 |
+
from llama_index.llms.base import llm_completion_callback
|
23 |
+
from llama_index.postprocessor import SentenceTransformerRerank
|
24 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
25 |
+
from llama_index.retrievers import BaseRetriever, BM25Retriever
|
26 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
27 |
+
from unstructured.partition.pdf import partition_pdf
|
28 |
+
from pypdf import PdfReader
|
29 |
+
|
30 |
+
|
31 |
+
# Configure basic logging
|
32 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
33 |
+
|
34 |
+
# Create a logger object
|
35 |
+
logger = logging.getLogger(__name__)
|
36 |
+
|
37 |
+
|
38 |
+
class ConfigManager:
|
39 |
+
"""
|
40 |
+
A class to manage loading and accessing configuration settings.
|
41 |
+
|
42 |
+
Attributes:
|
43 |
+
config (dict): Dictionary to hold configuration settings.
|
44 |
+
|
45 |
+
Methods:
|
46 |
+
load_config(config_path: str): Loads the configuration from a given JSON file.
|
47 |
+
get_config_value(key: str): Retrieves a specific configuration value.
|
48 |
+
"""
|
49 |
+
|
50 |
+
def __init__(self):
|
51 |
+
self.configs = {}
|
52 |
+
|
53 |
+
def load_config(self, config_name: str, config_path: str) -> None:
|
54 |
+
"""
|
55 |
+
Loads configuration settings from a specified JSON file into a named configuration.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
config_name (str): The name to assign to this set of configurations.
|
59 |
+
config_path (str): The path to the configuration file.
|
60 |
+
|
61 |
+
Raises:
|
62 |
+
FileNotFoundError: If the config file is not found.
|
63 |
+
json.JSONDecodeError: If there is an error parsing the config file.
|
64 |
+
"""
|
65 |
+
try:
|
66 |
+
with open(config_path, 'r') as f:
|
67 |
+
self.configs[config_name] = json.load(f)
|
68 |
+
except FileNotFoundError:
|
69 |
+
logging.error(f"Config file not found at {config_path}")
|
70 |
+
raise
|
71 |
+
except json.JSONDecodeError as e:
|
72 |
+
logging.error(f"Error decoding config file: {e}")
|
73 |
+
raise
|
74 |
+
|
75 |
+
def get_config_value(self, config_name: str, key: str) -> str:
|
76 |
+
"""
|
77 |
+
Retrieves a specific configuration value.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
key (str): The key for the configuration setting.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
str: The value of the configuration setting.
|
84 |
+
|
85 |
+
Raises:
|
86 |
+
ValueError: If the key is not found or is set to a placeholder value.
|
87 |
+
"""
|
88 |
+
value = self.configs.get(config_name, {}).get(key)
|
89 |
+
if value is None or value == "ENTER_YOUR_TOKEN_HERE":
|
90 |
+
raise ValueError(f"Please set your '{key}' in the config.json file.")
|
91 |
+
return value
|
92 |
+
|
93 |
+
|
94 |
+
class base_utils:
|
95 |
+
"""
|
96 |
+
A utility class providing miscellaneous static methods for processing and analyzing text data,
|
97 |
+
particularly from PDF documents and filenames. This class also includes methods for file operations.
|
98 |
+
|
99 |
+
This class encapsulates the functionality of extracting key information from text, such as scores,
|
100 |
+
reasoning, and IDs, locating specific data within a DataFrame based on an ID extracted from a filename,
|
101 |
+
and reading content from files.
|
102 |
+
|
103 |
+
Attributes:
|
104 |
+
None (This class contains only static methods and does not maintain any state)
|
105 |
+
|
106 |
+
Methods:
|
107 |
+
extract_score_reasoning(text: str) -> Dict[str, Optional[str]]:
|
108 |
+
Extracts a score and reasoning from a given text using regular expressions.
|
109 |
+
|
110 |
+
extract_id_from_filename(filename: str) -> Optional[int]:
|
111 |
+
Extracts an ID from a given filename based on a specified pattern.
|
112 |
+
|
113 |
+
find_row_for_pdf(pdf_filename: str, dataframe: pd.DataFrame) -> Union[pd.Series, str]:
|
114 |
+
Searches for a row in a DataFrame that matches an ID extracted from a PDF filename.
|
115 |
+
|
116 |
+
read_from_file(file_path: str) -> str:
|
117 |
+
Reads the content of a file and returns it as a string.
|
118 |
+
"""
|
119 |
+
|
120 |
+
@staticmethod
|
121 |
+
def read_from_file(file_path: str) -> str:
|
122 |
+
"""
|
123 |
+
Reads the content of a file and returns it as a string.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
file_path (str): The path to the file to be read.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
str: The content of the file.
|
130 |
+
"""
|
131 |
+
with open(file_path, 'r') as prompt_file:
|
132 |
+
prompt = prompt_file.read()
|
133 |
+
return prompt
|
134 |
+
|
135 |
+
@staticmethod
|
136 |
+
def extract_id_from_filename(filename: str) -> Optional[int]:
|
137 |
+
"""
|
138 |
+
Extracts an ID from a filename, assuming a specific format ('Id_{I}.pdf', where {I} is the ID).
|
139 |
+
|
140 |
+
Args:
|
141 |
+
filename (str): The filename from which to extract the ID.
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
int: The extracted ID as an integer, or None if the pattern is not found.
|
145 |
+
"""
|
146 |
+
# Assuming the file name is in the format 'Id_{I}.pdf', where {I} is the ID
|
147 |
+
match = re.search(r'Id_(\d+).pdf', filename)
|
148 |
+
if match:
|
149 |
+
return int(match.group(1)) # Convert to integer if ID is numeric
|
150 |
+
else:
|
151 |
+
return None
|
152 |
+
|
153 |
+
@staticmethod
|
154 |
+
def extract_score_reasoning(text: str) -> Dict[str, Optional[str]]:
|
155 |
+
"""
|
156 |
+
Extracts score and reasoning from a given text using regular expressions.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
text (str): The text from which to extract the score and reasoning.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
dict: A dictionary containing 'score' and 'reasoning', extracted from the text.
|
163 |
+
"""
|
164 |
+
# Define regular expression patterns for score and reasoning
|
165 |
+
score_pattern = r"Score: (\d+)"
|
166 |
+
reasoning_pattern = r"Reasoning: (.+)"
|
167 |
+
|
168 |
+
# Extract data using regular expressions
|
169 |
+
score_match = re.search(score_pattern, text)
|
170 |
+
reasoning_match = re.search(reasoning_pattern, text, re.DOTALL) # re.DOTALL allows '.' to match newlines
|
171 |
+
|
172 |
+
# Extract and return the results
|
173 |
+
extracted_data = {
|
174 |
+
"score": score_match.group(1) if score_match else None,
|
175 |
+
"reasoning": reasoning_match.group(1).strip() if reasoning_match else None
|
176 |
+
}
|
177 |
+
|
178 |
+
return extracted_data
|
179 |
+
|
180 |
+
@staticmethod
|
181 |
+
def find_row_for_pdf(pdf_filename: str, dataframe: pd.DataFrame) -> Union[pd.Series, str]:
|
182 |
+
"""
|
183 |
+
Finds the row in a dataframe corresponding to the ID extracted from a given PDF filename.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
pdf_filename (str): The filename of the PDF.
|
187 |
+
dataframe (pandas.DataFrame): The dataframe in which to find the corresponding row.
|
188 |
+
|
189 |
+
Returns:
|
190 |
+
pandas.Series or str: The matched row from the dataframe or a message indicating
|
191 |
+
that no matching row or invalid filename was found.
|
192 |
+
"""
|
193 |
+
pdf_id = Utility.extract_id_from_filename(pdf_filename)
|
194 |
+
if pdf_id is not None:
|
195 |
+
# Assuming the first column contains the ID
|
196 |
+
matched_row = dataframe[dataframe.iloc[:, 0] == pdf_id]
|
197 |
+
if not matched_row.empty:
|
198 |
+
return matched_row
|
199 |
+
else:
|
200 |
+
return "No matching row found."
|
201 |
+
else:
|
202 |
+
return "Invalid file name."
|
203 |
+
|
204 |
+
|
205 |
+
class PDFProcessor_Unstructured:
|
206 |
+
"""
|
207 |
+
A class to process PDF files, providing functionalities for extracting, categorizing,
|
208 |
+
and merging elements from a PDF file.
|
209 |
+
|
210 |
+
This class is designed to handle unstructured PDF documents, particularly useful for
|
211 |
+
tasks involving text extraction, categorization, and data processing within PDFs.
|
212 |
+
|
213 |
+
Attributes:
|
214 |
+
file_path (str): The full path to the PDF file.
|
215 |
+
folder_path (str): The directory path where the PDF file is located.
|
216 |
+
file_name (str): The name of the PDF file.
|
217 |
+
texts (List[str]): A list to store extracted text chunks.
|
218 |
+
tables (List[str]): A list to store extracted tables.
|
219 |
+
|
220 |
+
|
221 |
+
Methods:
|
222 |
+
extract_pdf_elements() -> List:
|
223 |
+
Extracts images, tables, and text chunks from a PDF file.
|
224 |
+
|
225 |
+
categorize_elements(raw_pdf_elements: List) -> None:
|
226 |
+
Categorizes extracted elements from a PDF into tables and texts.
|
227 |
+
|
228 |
+
merge_chunks() -> List[str]:
|
229 |
+
Merges text chunks based on punctuation and character case criteria.
|
230 |
+
|
231 |
+
should_skip_chunk(chunk: str) -> bool:
|
232 |
+
Determines if a chunk should be skipped based on its content.
|
233 |
+
|
234 |
+
should_merge_with_next(current_chunk: str, next_chunk: str) -> bool:
|
235 |
+
Determines if the current chunk should be merged with the next one.
|
236 |
+
|
237 |
+
process_pdf() -> Tuple[List[str], List[str]]:
|
238 |
+
Processes the PDF by extracting, categorizing, and merging elements.
|
239 |
+
|
240 |
+
process_pdf_file(uploaded_file) -> Tuple[List[str], List[str]]:
|
241 |
+
Processes an uploaded PDF file to extract and categorize text and tables.
|
242 |
+
"""
|
243 |
+
|
244 |
+
def __init__(self, config: Dict[str, any]):
|
245 |
+
self.file_path = None
|
246 |
+
self.folder_path = None
|
247 |
+
self.file_name = None
|
248 |
+
self.texts = []
|
249 |
+
self.tables = []
|
250 |
+
self.config = config if config is not None else self.default_config()
|
251 |
+
logger.info(f"Initialized PdfProcessor_Unstructured for file: {self.file_name}")
|
252 |
+
|
253 |
+
@staticmethod
|
254 |
+
def default_config() -> Dict[str, any]:
|
255 |
+
"""
|
256 |
+
Returns the default configuration for PDF processing.
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
Dict[str, any]: Default configuration options.
|
260 |
+
"""
|
261 |
+
return {
|
262 |
+
"extract_images": False,
|
263 |
+
"infer_table_structure": True,
|
264 |
+
"chunking_strategy": "by_title",
|
265 |
+
"max_characters": 10000,
|
266 |
+
"combine_text_under_n_chars": 100,
|
267 |
+
"strategy": "auto",
|
268 |
+
"model_name": "yolox"
|
269 |
+
}
|
270 |
+
|
271 |
+
def extract_pdf_elements(self) -> List:
|
272 |
+
"""
|
273 |
+
Extracts images, tables, and text chunks from a PDF file.
|
274 |
+
|
275 |
+
Returns:
|
276 |
+
List: A list of extracted elements from the PDF.
|
277 |
+
"""
|
278 |
+
logger.info("Starting extraction of PDF elements.")
|
279 |
+
try:
|
280 |
+
extracted_elements = partition_pdf(
|
281 |
+
filename=self.file_path,
|
282 |
+
extract_images_in_pdf=False,
|
283 |
+
infer_table_structure=True,
|
284 |
+
chunking_strategy="by_title",
|
285 |
+
max_characters=10000,
|
286 |
+
combine_text_under_n_chars=100,
|
287 |
+
image_output_dir_path=self.folder_path,
|
288 |
+
# strategy="fast",
|
289 |
+
)
|
290 |
+
logger.info("Extraction of PDF elements completed successfully.")
|
291 |
+
return extracted_elements
|
292 |
+
except Exception as e:
|
293 |
+
raise NotImplementedError(f"Error extracting PDF elements: {e}")
|
294 |
+
|
295 |
+
def categorize_elements(self, raw_pdf_elements: List) -> None:
|
296 |
+
"""
|
297 |
+
Categorizes extracted elements from a PDF into tables and texts.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
raw_pdf_elements (List): A list of elements extracted from the PDF.
|
301 |
+
"""
|
302 |
+
logger.debug("Starting categorization of PDF elements.")
|
303 |
+
for element in raw_pdf_elements:
|
304 |
+
element_type = str(type(element))
|
305 |
+
if "unstructured.documents.elements.Table" in element_type:
|
306 |
+
self.tables.append(str(element))
|
307 |
+
elif "unstructured.documents.elements.CompositeElement" in element_type:
|
308 |
+
self.texts.append(str(element))
|
309 |
+
|
310 |
+
logger.debug("Categorization of PDF elements completed.")
|
311 |
+
|
312 |
+
def merge_chunks(self) -> List[str]:
|
313 |
+
"""
|
314 |
+
Merges text chunks based on punctuation and character case criteria.
|
315 |
+
|
316 |
+
Returns:
|
317 |
+
List[str]: A list of merged text chunks.
|
318 |
+
"""
|
319 |
+
logger.debug("Starting merging of text chunks.")
|
320 |
+
|
321 |
+
merged_chunks = []
|
322 |
+
skip_next = False
|
323 |
+
|
324 |
+
for i, current_chunk in enumerate(self.texts[:-1]):
|
325 |
+
next_chunk = self.texts[i + 1]
|
326 |
+
|
327 |
+
if self.should_skip_chunk(current_chunk):
|
328 |
+
continue
|
329 |
+
|
330 |
+
if self.should_merge_with_next(current_chunk, next_chunk):
|
331 |
+
merged_chunks.append(current_chunk + " " + next_chunk)
|
332 |
+
skip_next = True
|
333 |
+
else:
|
334 |
+
merged_chunks.append(current_chunk)
|
335 |
+
|
336 |
+
if not skip_next:
|
337 |
+
merged_chunks.append(self.texts[-1])
|
338 |
+
|
339 |
+
logger.debug("Merging of text chunks completed.")
|
340 |
+
|
341 |
+
return merged_chunks
|
342 |
+
|
343 |
+
@staticmethod
|
344 |
+
def should_skip_chunk(chunk: str) -> bool:
|
345 |
+
"""
|
346 |
+
Determines if a chunk should be skipped based on its content.
|
347 |
+
|
348 |
+
Args:
|
349 |
+
chunk (str): The text chunk to be evaluated.
|
350 |
+
|
351 |
+
Returns:
|
352 |
+
bool: True if the chunk should be skipped, False otherwise.
|
353 |
+
"""
|
354 |
+
return (chunk.lower().startswith(("figure", "fig", "table")) or
|
355 |
+
not chunk[0].isalnum() or
|
356 |
+
re.match(r'^\d+\.', chunk))
|
357 |
+
|
358 |
+
@staticmethod
|
359 |
+
def should_merge_with_next(current_chunk: str, next_chunk: str) -> bool:
|
360 |
+
"""
|
361 |
+
Determines if the current chunk should be merged with the next one.
|
362 |
+
|
363 |
+
Args:
|
364 |
+
current_chunk (str): The current text chunk.
|
365 |
+
next_chunk (str): The next text chunk.
|
366 |
+
|
367 |
+
Returns:
|
368 |
+
bool: True if the chunks should be merged, False otherwise.
|
369 |
+
"""
|
370 |
+
return (current_chunk.endswith(",") or
|
371 |
+
(current_chunk[-1].islower() and next_chunk[0].islower()))
|
372 |
+
|
373 |
+
def process_pdf(self) -> Tuple[List[str], List[str]]:
|
374 |
+
"""
|
375 |
+
Processes the PDF by extracting, categorizing, and merging elements.
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
Tuple[List[str], List[str]]: A tuple of merged text chunks and tables.
|
379 |
+
is_research_paper: A boolean indicating if the paper is a research paper or not.
|
380 |
+
"""
|
381 |
+
is_review_paper = False
|
382 |
+
logger.info("Starting processing of the PDF.")
|
383 |
+
try:
|
384 |
+
time_extract = time.time()
|
385 |
+
raw_pdf_elements = self.extract_pdf_elements()
|
386 |
+
logger.info(
|
387 |
+
f">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> PDF elements extracted in {time.time() - time_extract:.2f} seconds.")
|
388 |
+
|
389 |
+
time_review = time.time()
|
390 |
+
for element in raw_pdf_elements:
|
391 |
+
text = element.text.split()
|
392 |
+
for word in text:
|
393 |
+
if word.lower() == 'review':
|
394 |
+
logger.warning("!!! this seems to be a review paper and not a research paper. this demo "
|
395 |
+
"analyses only research papers.")
|
396 |
+
is_review_paper = True
|
397 |
+
logging.info(
|
398 |
+
f">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> PDF review check completed in {time.time() - time_review:.2f} seconds.")
|
399 |
+
|
400 |
+
time_categorize = time.time()
|
401 |
+
self.categorize_elements(raw_pdf_elements)
|
402 |
+
logger.info(
|
403 |
+
f">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> PDF elements categorized in {time.time() - time_categorize:.2f} seconds.")
|
404 |
+
|
405 |
+
time_merge = time.time()
|
406 |
+
merged_chunks = self.merge_chunks()
|
407 |
+
logger.info(
|
408 |
+
f">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> PDF text chunks merged in {time.time() - time_merge:.2f} seconds.")
|
409 |
+
return merged_chunks, self.tables
|
410 |
+
except Exception as e:
|
411 |
+
raise NotImplementedError(f"Error processing PDF: {e}")
|
412 |
+
|
413 |
+
def process_pdf_file(self, uploaded_file):
|
414 |
+
"""
|
415 |
+
Process an uploaded PDF file.
|
416 |
+
|
417 |
+
If a new file is uploaded, the previously stored file is deleted.
|
418 |
+
The method updates the file path, processes the PDF, and returns the results.
|
419 |
+
|
420 |
+
Parameters:
|
421 |
+
uploaded_file: The new PDF file uploaded for processing.
|
422 |
+
|
423 |
+
Returns:
|
424 |
+
The results of processing the PDF file.
|
425 |
+
"""
|
426 |
+
|
427 |
+
logger.info(f"Starting to process the PDF file: {uploaded_file.filename}")
|
428 |
+
|
429 |
+
with NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
|
430 |
+
uploaded_file.save(temp_file.name)
|
431 |
+
self.file_path = temp_file.name
|
432 |
+
self.folder_path = os.path.dirname(self.file_path)
|
433 |
+
|
434 |
+
try:
|
435 |
+
logger.debug(f"Processing PDF at {self.file_path}")
|
436 |
+
results = self.process_pdf()
|
437 |
+
title = self.extract_title_from_pdf(self.file_path)
|
438 |
+
logger.info("PDF processing completed successfully.")
|
439 |
+
return (*results, title)
|
440 |
+
|
441 |
+
except Exception as e:
|
442 |
+
logger.error(f"Error processing PDF file: {e}", exc_info=True)
|
443 |
+
raise
|
444 |
+
finally:
|
445 |
+
try:
|
446 |
+
os.remove(self.file_path)
|
447 |
+
logger.debug(f"Temporary file {self.file_path} deleted.")
|
448 |
+
except Exception as e:
|
449 |
+
logger.warning(f"Error deleting temporary file: {e}", exc_info=True)
|
450 |
+
|
451 |
+
def extract_title_from_pdf(self, uploaded_file):
|
452 |
+
"""
|
453 |
+
Extracts the title from a PDF file's metadata.
|
454 |
+
|
455 |
+
This function reads the metadata of a PDF file using PyPDF2 and attempts to
|
456 |
+
extract the title. If the title is present in the metadata, it is returned.
|
457 |
+
Otherwise, a default message indicating that the title was not found is returned.
|
458 |
+
|
459 |
+
Parameters:
|
460 |
+
uploaded_file (file): A file object or a path to the PDF file from which
|
461 |
+
to extract the title. The file must be opened in binary mode.
|
462 |
+
|
463 |
+
Returns:
|
464 |
+
str: The title of the PDF file as a string. If no title is found, returns
|
465 |
+
'Title not found'.
|
466 |
+
"""
|
467 |
+
# Initialize PDF reader
|
468 |
+
pdf_reader = PdfReader(uploaded_file)
|
469 |
+
|
470 |
+
# Extract document information
|
471 |
+
meta = pdf_reader.metadata
|
472 |
+
|
473 |
+
# Retrieve title from document information
|
474 |
+
title = meta.title if meta and meta.title else 'Title not found'
|
475 |
+
return title
|
476 |
+
|
477 |
+
|
478 |
+
|
479 |
+
|
480 |
+
class HybridRetriever(BaseRetriever):
|
481 |
+
"""
|
482 |
+
A hybrid retriever that combines results from vector-based and BM25 retrieval methods.
|
483 |
+
Inherits from BaseRetriever.
|
484 |
+
|
485 |
+
This class uses two different retrieval methods and merges their results to provide a
|
486 |
+
comprehensive set of documents in response to a query. It ensures diversity in the
|
487 |
+
retrieved documents by leveraging the strengths of both retrieval methods.
|
488 |
+
|
489 |
+
Attributes:
|
490 |
+
vector_retriever: An instance of a vector-based retriever.
|
491 |
+
bm25_retriever: An instance of a BM25 retriever.
|
492 |
+
|
493 |
+
Methods:
|
494 |
+
__init__(vector_retriever, bm25_retriever): Initializes the HybridRetriever with vector and BM25 retrievers.
|
495 |
+
_retrieve(query, **kwargs): Performs the retrieval operation by combining results from both retrievers.
|
496 |
+
_combine_results(bm25_nodes, vector_nodes): Combines and de-duplicates the results from both retrievers.
|
497 |
+
"""
|
498 |
+
|
499 |
+
def __init__(self, vector_retriever, bm25_retriever):
|
500 |
+
super().__init__()
|
501 |
+
self.vector_retriever = vector_retriever
|
502 |
+
self.bm25_retriever = bm25_retriever
|
503 |
+
logger.info("HybridRetriever initialized with vector and BM25 retrievers.")
|
504 |
+
|
505 |
+
def _retrieve(self, query: str, **kwargs) -> List:
|
506 |
+
"""
|
507 |
+
Retrieves and combines results from both vector and BM25 retrievers.
|
508 |
+
|
509 |
+
Args:
|
510 |
+
query: The query string for document retrieval.
|
511 |
+
**kwargs: Additional keyword arguments for retrieval.
|
512 |
+
|
513 |
+
Returns:
|
514 |
+
List: Combined list of unique nodes retrieved from both methods.
|
515 |
+
"""
|
516 |
+
logger.info(f"Retrieving documents for query: {query}")
|
517 |
+
try:
|
518 |
+
bm25_nodes = self.bm25_retriever.retrieve(query, **kwargs)
|
519 |
+
vector_nodes = self.vector_retriever.retrieve(query, **kwargs)
|
520 |
+
combined_nodes = self._combine_results(bm25_nodes, vector_nodes)
|
521 |
+
|
522 |
+
logger.info(f"Retrieved {len(combined_nodes)} unique nodes combining vector and BM25 retrievers.")
|
523 |
+
return combined_nodes
|
524 |
+
except Exception as e:
|
525 |
+
logger.error(f"Error in retrieval: {e}")
|
526 |
+
raise
|
527 |
+
|
528 |
+
@staticmethod
|
529 |
+
def _combine_results(bm25_nodes: List, vector_nodes: List) -> List:
|
530 |
+
"""
|
531 |
+
Combines and de-duplicates results from BM25 and vector retrievers.
|
532 |
+
|
533 |
+
Args:
|
534 |
+
bm25_nodes: Nodes retrieved from BM25 retriever.
|
535 |
+
vector_nodes: Nodes retrieved from vector retriever.
|
536 |
+
|
537 |
+
Returns:
|
538 |
+
List: Combined list of unique nodes.
|
539 |
+
"""
|
540 |
+
node_ids: Set = set()
|
541 |
+
combined_nodes = []
|
542 |
+
|
543 |
+
for node in bm25_nodes + vector_nodes:
|
544 |
+
if node.node_id not in node_ids:
|
545 |
+
combined_nodes.append(node)
|
546 |
+
node_ids.add(node.node_id)
|
547 |
+
|
548 |
+
return combined_nodes
|
549 |
+
|
550 |
+
|
551 |
+
class PDFQueryEngine:
|
552 |
+
"""
|
553 |
+
A class to handle the process of setting up a query engine and performing queries on PDF documents.
|
554 |
+
|
555 |
+
This class encapsulates the functionality of creating prompt templates, embedding models, service contexts,
|
556 |
+
indexes, hybrid retrievers, response synthesizers, and executing queries on the set up engine.
|
557 |
+
|
558 |
+
Attributes:
|
559 |
+
documents (List): A list of documents to be indexed.
|
560 |
+
llm (Language Model): The language model to be used for embeddings and queries.
|
561 |
+
qa_prompt_tmpl (str): Template for creating query prompts.
|
562 |
+
queries (List[str]): List of queries to be executed.
|
563 |
+
|
564 |
+
Methods:
|
565 |
+
setup_query_engine(): Sets up the query engine with all necessary components.
|
566 |
+
execute_queries(): Executes the predefined queries and prints the results.
|
567 |
+
"""
|
568 |
+
|
569 |
+
def __init__(self, documents: List[Any], llm: Any, embed_model: Any, qa_prompt_tmpl: Any):
|
570 |
+
|
571 |
+
self.documents = documents
|
572 |
+
self.llm = llm
|
573 |
+
self.embed_model = embed_model
|
574 |
+
self.qa_prompt_tmpl = qa_prompt_tmpl
|
575 |
+
self.base_utils = base_utils()
|
576 |
+
|
577 |
+
logger.info("PDFQueryEngine initialized.")
|
578 |
+
|
579 |
+
def setup_query_engine(self):
|
580 |
+
"""
|
581 |
+
Sets up the query engine by initializing and configuring the embedding model, service context, index,
|
582 |
+
hybrid retriever (combining vector and BM25 retrievers), and the response synthesizer.
|
583 |
+
|
584 |
+
Args:
|
585 |
+
embed_model: The embedding model to be used.
|
586 |
+
service_context: The context for providing services to the query engine.
|
587 |
+
index: The index used for storing and retrieving documents.
|
588 |
+
hybrid_retriever: The retriever that combines vector and BM25 retrieval methods.
|
589 |
+
response_synthesizer: The synthesizer for generating responses to queries.
|
590 |
+
|
591 |
+
Returns:
|
592 |
+
Any: The configured query engine.
|
593 |
+
"""
|
594 |
+
|
595 |
+
try:
|
596 |
+
logger.info("Initializing the service context for query engine setup.")
|
597 |
+
service_context = ServiceContext.from_defaults(llm=self.llm, embed_model=self.embed_model)
|
598 |
+
|
599 |
+
logger.info("Creating an index from documents.")
|
600 |
+
index = VectorStoreIndex.from_documents(documents=self.documents, service_context=service_context)
|
601 |
+
nodes = service_context.node_parser.get_nodes_from_documents(self.documents)
|
602 |
+
|
603 |
+
logger.info("Setting up vector and BM25 retrievers.")
|
604 |
+
vector_retriever = index.as_retriever(similarity_top_k=5)
|
605 |
+
bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=5)
|
606 |
+
hybrid_retriever = HybridRetriever(vector_retriever, bm25_retriever)
|
607 |
+
|
608 |
+
logger.info("Configuring the response synthesizer with the prompt template.")
|
609 |
+
qa_prompt = PromptTemplate(self.qa_prompt_tmpl)
|
610 |
+
response_synthesizer = get_response_synthesizer(
|
611 |
+
service_context=service_context,
|
612 |
+
text_qa_template=qa_prompt,
|
613 |
+
response_mode="compact",
|
614 |
+
)
|
615 |
+
|
616 |
+
logger.info("Assembling the query engine with reranker and synthesizer.")
|
617 |
+
reranker = SentenceTransformerRerank(top_n=4, model="BAAI/bge-reranker-base")
|
618 |
+
query_engine = RetrieverQueryEngine.from_args(
|
619 |
+
retriever=hybrid_retriever,
|
620 |
+
node_postprocessors=[reranker],
|
621 |
+
response_synthesizer=response_synthesizer,
|
622 |
+
)
|
623 |
+
|
624 |
+
logger.info("Query engine setup complete.")
|
625 |
+
return query_engine
|
626 |
+
except Exception as e:
|
627 |
+
logger.error(f"Error during query engine setup: {e}")
|
628 |
+
raise
|
629 |
+
|
630 |
+
def evaluate_with_llm(self, reg_result: Any, peer_result: Any, guidelines_result: Any, queries: List[str]) -> Tuple[
|
631 |
+
int, List[int], int, float, List[str]]:
|
632 |
+
"""
|
633 |
+
Evaluate documents using a language model based on various criteria.
|
634 |
+
|
635 |
+
Args:
|
636 |
+
reg_result (Any): Result related to registration.
|
637 |
+
peer_result (Any): Result related to peer review.
|
638 |
+
guidelines_result (Any): Result related to following guidelines.
|
639 |
+
queries (List[str]): A list of queries to be processed.
|
640 |
+
|
641 |
+
Returns:
|
642 |
+
Tuple[int, List[int], int, float, List[str]]: A tuple containing the total score, a list of scores per criteria,
|
643 |
+
"""
|
644 |
+
|
645 |
+
logger.info("Starting evaluation with LLM.")
|
646 |
+
query_engine = self.setup_query_engine()
|
647 |
+
|
648 |
+
total_score = 0
|
649 |
+
criteria_met = 0
|
650 |
+
reasoning = []
|
651 |
+
results = {}
|
652 |
+
|
653 |
+
for j, query in enumerate(queries):
|
654 |
+
# Predefine extracted_data to handle the default case
|
655 |
+
extracted_data = None
|
656 |
+
|
657 |
+
# Handle special cases based on the value of j and other conditions
|
658 |
+
if j == 1 and reg_result:
|
659 |
+
extracted_data = {"score": 1, "reasoning": reg_result[0]}
|
660 |
+
elif j == 2 and guidelines_result:
|
661 |
+
extracted_data = {"score": 1,
|
662 |
+
"reasoning": "The article is published in a journal following EQUATOR-NETWORK reporting guidelines"}
|
663 |
+
elif j == 8 and (guidelines_result or peer_result):
|
664 |
+
extracted_data = {"score": 1, "reasoning": "The article is published in a peer reviewed journal."}
|
665 |
+
|
666 |
+
# Handle the default case if none of the special conditions were met
|
667 |
+
if extracted_data is None:
|
668 |
+
result = query_engine.query(query).response
|
669 |
+
extracted_data = self.base_utils.extract_score_reasoning(result)
|
670 |
+
|
671 |
+
if extracted_data['score'] and int(extracted_data["score"]) > 0:
|
672 |
+
criteria_met += 1
|
673 |
+
total_score += int(extracted_data["score"])
|
674 |
+
|
675 |
+
reasoning.append(extracted_data["reasoning"])
|
676 |
+
results[j] = {
|
677 |
+
"reasoning": extracted_data["reasoning"],
|
678 |
+
"score": int(extracted_data["score"]) if extracted_data['score'] else 0
|
679 |
+
}
|
680 |
+
|
681 |
+
score_percentage = (float(total_score) / len(queries)) * 100
|
682 |
+
logger.info("Evaluation completed.")
|
683 |
+
return total_score, criteria_met, score_percentage, reasoning, results
|
684 |
+
|
685 |
+
|
686 |
+
class MixtralLLM(CustomLLM):
|
687 |
+
"""
|
688 |
+
A custom language model class for interfacing with the Hugging Face API, specifically using the Mixtral model.
|
689 |
+
|
690 |
+
Attributes:
|
691 |
+
context_window (int): Number of tokens used for context during inference.
|
692 |
+
num_output (int): Number of tokens to generate as output.
|
693 |
+
temperature (float): Sampling temperature for token generation.
|
694 |
+
model_name (str): Name of the model on Hugging Face's model hub.
|
695 |
+
api_key (str): API key for authenticating with the Hugging Face API.
|
696 |
+
|
697 |
+
Methods:
|
698 |
+
metadata: Retrieves metadata about the model.
|
699 |
+
do_hf_call: Makes an API call to the Hugging Face model.
|
700 |
+
complete: Generates a complete response for a given prompt.
|
701 |
+
stream_complete: Streams a series of token completions for a given prompt.
|
702 |
+
"""
|
703 |
+
|
704 |
+
def __init__(self, context_window: int, num_output: int, temperature: float, model_name: str, api_key: str):
|
705 |
+
"""
|
706 |
+
Initialize the MixtralLLM class with specific configuration values.
|
707 |
+
|
708 |
+
Args:
|
709 |
+
context_window (int): The number of tokens to consider for context during LLM inference.
|
710 |
+
num_output (int): The number of tokens to generate in the output.
|
711 |
+
temperature (float): The sampling temperature to use for generating tokens.
|
712 |
+
model_name (str): The name of the model to be used from Hugging Face's model hub.
|
713 |
+
api_key (str): The API key for authentication with Hugging Face's inference API.
|
714 |
+
"""
|
715 |
+
super().__init__()
|
716 |
+
self.context_window = context_window
|
717 |
+
self.num_output = num_output
|
718 |
+
self.temperature = temperature
|
719 |
+
self.model_name = model_name
|
720 |
+
self.api_key = api_key
|
721 |
+
|
722 |
+
@property
|
723 |
+
def metadata(self) -> LLMMetadata:
|
724 |
+
"""
|
725 |
+
Retrieves metadata for the Mixtral LLM.
|
726 |
+
|
727 |
+
Returns:
|
728 |
+
LLMMetadata: An object containing metadata such as context window, number of outputs, and model name.
|
729 |
+
"""
|
730 |
+
return LLMMetadata(
|
731 |
+
context_window=self.context_window,
|
732 |
+
num_output=self.num_output,
|
733 |
+
model_name=self.model_name,
|
734 |
+
)
|
735 |
+
|
736 |
+
def do_hf_call(self, prompt: str) -> str:
|
737 |
+
"""
|
738 |
+
Makes an API call to the Hugging Face model and retrieves the generated response.
|
739 |
+
|
740 |
+
Args:
|
741 |
+
prompt (str): The input prompt for the model.
|
742 |
+
|
743 |
+
Returns:
|
744 |
+
str: The text generated by the model in response to the prompt.
|
745 |
+
|
746 |
+
Raises:
|
747 |
+
Exception: If the API call fails or returns an error.
|
748 |
+
"""
|
749 |
+
data = {
|
750 |
+
"inputs": prompt,
|
751 |
+
"parameters": {"Temperature": self.temperature}
|
752 |
+
}
|
753 |
+
|
754 |
+
# Makes a POST request to the Hugging Face API to get the model's response
|
755 |
+
response = requests.post(
|
756 |
+
f'https://api-inference.huggingface.co/models/{self.model_name}',
|
757 |
+
headers={
|
758 |
+
'authorization': f'Bearer {self.api_key}',
|
759 |
+
'content-type': 'application/json',
|
760 |
+
},
|
761 |
+
json=data,
|
762 |
+
stream=True
|
763 |
+
)
|
764 |
+
|
765 |
+
# Checks for a successful response and parses the generated text
|
766 |
+
if response.status_code != 200 or not response.json() or 'error' in response.json():
|
767 |
+
print(f"Error: {response}")
|
768 |
+
return "Unable to answer for technical reasons."
|
769 |
+
full_txt = response.json()[0]['generated_text']
|
770 |
+
# Finds the section of the text following the context separator
|
771 |
+
offset = full_txt.find("---------------------")
|
772 |
+
ss = full_txt[offset:]
|
773 |
+
# Extracts the actual answer from the response
|
774 |
+
offset = ss.find("Answer:")
|
775 |
+
return ss[offset + 7:].strip()
|
776 |
+
|
777 |
+
@llm_completion_callback()
|
778 |
+
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
|
779 |
+
"""
|
780 |
+
Generates a complete response for a given prompt using the Hugging Face API.
|
781 |
+
|
782 |
+
Args:
|
783 |
+
prompt (str): The input prompt for the model.
|
784 |
+
**kwargs: Additional keyword arguments for the completion.
|
785 |
+
|
786 |
+
Returns:
|
787 |
+
CompletionResponse: The complete response from the model.
|
788 |
+
"""
|
789 |
+
response = self.do_hf_call(prompt)
|
790 |
+
return CompletionResponse(text=response)
|
791 |
+
|
792 |
+
@llm_completion_callback()
|
793 |
+
def stream_complete(
|
794 |
+
self, prompt: str, **kwargs: Any
|
795 |
+
) -> CompletionResponseGen:
|
796 |
+
"""
|
797 |
+
Streams a series of token completions as a response for the given prompt.
|
798 |
+
|
799 |
+
This method is useful for streaming responses where each token is generated sequentially.
|
800 |
+
|
801 |
+
Args:
|
802 |
+
prompt (str): The input prompt for the model.
|
803 |
+
**kwargs: Additional keyword arguments for the streaming completion.
|
804 |
+
|
805 |
+
Yields:
|
806 |
+
CompletionResponseGen: A generator yielding each token in the completion response.
|
807 |
+
"""
|
808 |
+
# Yields a stream of tokens as the completion response for the given prompt
|
809 |
+
response = ""
|
810 |
+
for token in self.do_hf_call(prompt):
|
811 |
+
response += token
|
812 |
+
yield CompletionResponse(text=response, delta=token)
|
813 |
+
|
814 |
+
|
815 |
+
class KeywordSearch():
|
816 |
+
def __init__(self, chunks):
|
817 |
+
self.chunks = chunks
|
818 |
+
|
819 |
+
def find_journal_name(self, response: str, journal_list: list) -> str:
|
820 |
+
"""
|
821 |
+
Searches for a journal name in a given response string.
|
822 |
+
|
823 |
+
This function iterates through a list of known journal names and checks if any of these
|
824 |
+
names are present in the response string. It returns the first journal name found in the
|
825 |
+
response. If no journal names from the list are found in the response, a default message
|
826 |
+
indicating that the journal name was not found is returned.
|
827 |
+
|
828 |
+
Args:
|
829 |
+
response (str): The response string to search for a journal name.
|
830 |
+
journal_list (list): A list of journal names to search within the response.
|
831 |
+
|
832 |
+
Returns:
|
833 |
+
str: The first journal name found in the response, or a default message if no journal name is found.
|
834 |
+
"""
|
835 |
+
response_lower = response.lower()
|
836 |
+
for journal in journal_list:
|
837 |
+
journal_lower = journal.lower()
|
838 |
+
|
839 |
+
if journal_lower in response_lower:
|
840 |
+
return True
|
841 |
+
|
842 |
+
return False
|
843 |
+
|
844 |
+
def check_registration(self):
|
845 |
+
"""
|
846 |
+
Check chunks of text for various registration numbers or URLs of registries.
|
847 |
+
Returns the sentence containing a registration number, or if not found,
|
848 |
+
returns chunks containing registry URLs.
|
849 |
+
|
850 |
+
Args:
|
851 |
+
chunks (list of str): List of text chunks to search.
|
852 |
+
|
853 |
+
Returns:
|
854 |
+
list of str: List of matching sentences or chunks, or an empty list if no matches are found.
|
855 |
+
"""
|
856 |
+
|
857 |
+
# Patterns for different registration types
|
858 |
+
patterns = {
|
859 |
+
"NCT": r"\(?(NCT#?\s*(No\s*)?)(\d{8})\)?",
|
860 |
+
"ISRCTN": r"(ISRCTN\d{8})",
|
861 |
+
"EudraCT": r"(\d{4}-\d{6}-\d{2})",
|
862 |
+
"UMIN-CTR": r"(UMIN\d{9})",
|
863 |
+
"CTRI": r"(CTRI/\d{4}/\d{2}/\d{6})"
|
864 |
+
}
|
865 |
+
|
866 |
+
# Registry URLs
|
867 |
+
registry_urls = [
|
868 |
+
"www.anzctr.org.au",
|
869 |
+
"anzctr.org.au",
|
870 |
+
"www.clinicaltrials.gov",
|
871 |
+
"clinicaltrials.gov",
|
872 |
+
"www.ISRCTN.org",
|
873 |
+
"ISRCTN.org",
|
874 |
+
"www.umin.ac.jp/ctr/index/htm",
|
875 |
+
"umin.ac.jp/ctr/index/htm",
|
876 |
+
"www.onderzoekmetmensen.nl/en",
|
877 |
+
"onderzoekmetmensen.nl/en",
|
878 |
+
"eudract.ema.europa.eu",
|
879 |
+
"www.eudract.ema.europa.eu"
|
880 |
+
]
|
881 |
+
|
882 |
+
# Check each chunk for registration numbers
|
883 |
+
for chunk in self.chunks:
|
884 |
+
# Split chunk into sentences
|
885 |
+
sentences = re.split(r'(?<=[.!?]) +', chunk)
|
886 |
+
|
887 |
+
# Check each sentence for any registration number
|
888 |
+
for sentence in sentences:
|
889 |
+
for pattern in patterns.values():
|
890 |
+
if re.search(pattern, sentence):
|
891 |
+
return [sentence] # Return immediately if a registration number is found
|
892 |
+
|
893 |
+
# If no registration number found, check for URLs in chunks
|
894 |
+
matching_chunks = []
|
895 |
+
for chunk in self.chunks:
|
896 |
+
if any(url in chunk for url in registry_urls):
|
897 |
+
matching_chunks.append(chunk)
|
898 |
+
|
899 |
+
return matching_chunks
|
900 |
+
|
901 |
+
|
902 |
+
class StringExtraction():
|
903 |
+
"""
|
904 |
+
A class to handle the the process of extraction of query string from complete LLM responses.
|
905 |
+
|
906 |
+
This class encapsulates the functionality of extracting original ground truth from a labelled data csv and query strings from responses. Please note that
|
907 |
+
LLMs may generate different formatted answers based on different models or different prompting technique. In such cases, extract_original_prompt may not give
|
908 |
+
satisfactory results. Best case scenario will be write your own string extraction method in such cases.
|
909 |
+
|
910 |
+
|
911 |
+
Methods:
|
912 |
+
extract_original_prompt():
|
913 |
+
extraction_ground_truth():
|
914 |
+
"""
|
915 |
+
|
916 |
+
def extract_original_prompt(self, result):
|
917 |
+
r1 = result.response.strip().split("\n")
|
918 |
+
binary_response = ""
|
919 |
+
explanation_response = ""
|
920 |
+
for r in r1:
|
921 |
+
if binary_response == "" and (r.find("Yes") >= 0 or r.find("No") >= 0):
|
922 |
+
binary_response = r
|
923 |
+
elif r.find("Reasoning:") >= 0:
|
924 |
+
cut = r.find(":")
|
925 |
+
explanation_response += r[cut + 1:].strip()
|
926 |
+
|
927 |
+
return binary_response, explanation_response
|
928 |
+
|
929 |
+
def extraction_ground_truth(self, paper_name, labelled_data):
|
930 |
+
id = int(paper_name[paper_name.find("_") + 1:paper_name.find(".pdf")])
|
931 |
+
id_row = labelled_data[labelled_data["id"] == id]
|
932 |
+
ground_truth = id_row.iloc[:, 2:11].values.tolist()[0]
|
933 |
+
binary_ground_truth = []
|
934 |
+
explanation_ground_truth = []
|
935 |
+
for g in ground_truth:
|
936 |
+
if len(g) > 0:
|
937 |
+
binary_ground_truth.append("Yes")
|
938 |
+
explanation_ground_truth.append(g)
|
939 |
+
else:
|
940 |
+
binary_ground_truth.append("No")
|
941 |
+
explanation_ground_truth.append("The article does not provide any relevant information.")
|
942 |
+
return binary_ground_truth, explanation_ground_truth
|
943 |
+
|
944 |
+
|
945 |
+
class EvaluationMetrics():
|
946 |
+
"""
|
947 |
+
|
948 |
+
This class encapsulates the evaluation methods that have been used in the project.
|
949 |
+
|
950 |
+
Attributes:
|
951 |
+
explanation_response = a list of detailed response from the LLM model corresponding to each query
|
952 |
+
explanation_ground_truth = the list of ground truth corresponding to each query
|
953 |
+
|
954 |
+
Methods:
|
955 |
+
metric_cosine_similairty(): Sets up the query engine with all necessary components.
|
956 |
+
metric_rouge(): Executes the predefined queries and prints the results.
|
957 |
+
metric_binary_accuracy():
|
958 |
+
"""
|
959 |
+
|
960 |
+
def __init__(self, explanation_response, explanation_ground_truth, embedding_model):
|
961 |
+
self.explanation_response = explanation_response
|
962 |
+
self.explanation_ground_truth = explanation_ground_truth
|
963 |
+
self.embedding_model = embedding_model
|
964 |
+
|
965 |
+
def metric_cosine_similarity(self):
|
966 |
+
ground_truth_embedding = self.embedding_model.encode(self.explanation_ground_truth)
|
967 |
+
explanation_response_embedding = self.embedding_model.encode(self.explanation_response)
|
968 |
+
return np.diag(cosine_similarity(ground_truth_embedding, explanation_response_embedding))
|
969 |
+
|
970 |
+
def metric_rouge(self):
|
971 |
+
rouge = evaluate.load("rouge")
|
972 |
+
results = rouge.compute(predictions=self.explanation_response, references=self.explanation_ground_truth)
|
973 |
+
return results
|
974 |
+
|
975 |
+
def binary_accuracy(self, binary_response, binary_ground_truth):
|
976 |
+
count = 0
|
977 |
+
if len(binary_response) != len(binary_ground_truth):
|
978 |
+
return "Arrays which are to be compared has different lengths."
|
979 |
+
else:
|
980 |
+
for i in range(len(binary_response)):
|
981 |
+
if binary_response[i] == binary_ground_truth[i]:
|
982 |
+
count += 1
|
983 |
+
return np.round(count / len(binary_response), 2)
|
librarymed/kromin/__init__.py
ADDED
File without changes
|
librarymed/kromin/app_librarymed.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
|
4 |
+
import openai
|
5 |
+
from flask import Flask, flash, request, redirect, jsonify
|
6 |
+
from llama_index import Document
|
7 |
+
from llama_index.embeddings import OpenAIEmbedding, HuggingFaceEmbedding
|
8 |
+
from llama_index.llms import OpenAI
|
9 |
+
|
10 |
+
from kromin.RAG_utils import ConfigManager
|
11 |
+
from kromin.RAG_utils import PDFProcessor_Unstructured, PDFQueryEngine, MixtralLLM, KeywordSearch, base_utils
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
app = Flask(__name__)
|
17 |
+
|
18 |
+
app.config['SECRET_KEY'] = 'librarymed super secret key'
|
19 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
20 |
+
config_manager = ConfigManager()
|
21 |
+
config_manager.load_config("model", "Config/model_config.json")
|
22 |
+
app.config['user_config'] = config_manager
|
23 |
+
|
24 |
+
|
25 |
+
def allowed_file(filename, allowed_extensions):
|
26 |
+
""" Helper function to check if the file extension is allowed """
|
27 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in allowed_extensions
|
28 |
+
|
29 |
+
|
30 |
+
@app.route('/', methods=['GET'])
|
31 |
+
def __get__():
|
32 |
+
score = 0
|
33 |
+
criteria_met = 0
|
34 |
+
title = ""
|
35 |
+
author_info = ""
|
36 |
+
reasoning = ""
|
37 |
+
|
38 |
+
return jsonify({
|
39 |
+
'title': title,
|
40 |
+
'author': author_info,
|
41 |
+
'score': score,
|
42 |
+
'num_criteria_met': criteria_met,
|
43 |
+
'reasoning': reasoning
|
44 |
+
})
|
45 |
+
|
46 |
+
|
47 |
+
@app.route('/upload', methods=['POST'])
|
48 |
+
def __post__():
|
49 |
+
|
50 |
+
config = app.config['user_config']
|
51 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
52 |
+
hf_token = os.getenv('HF_TOKEN')
|
53 |
+
embed = config.get_config_value("model", "embeddings")
|
54 |
+
embed_model_name = config.get_config_value("model", "embeddings_model")
|
55 |
+
llm_model = config.get_config_value("model", "llm_model")
|
56 |
+
model_temperature = config.get_config_value("model", "model_temp")
|
57 |
+
output_token_size = config.get_config_value("model", "max_tokens")
|
58 |
+
model_context_window = config.get_config_value("model", "context_window")
|
59 |
+
gpt_prompt_path = config.get_config_value("model", "GPT_PROMPT_PATH")
|
60 |
+
mistral_prompt_path = config.get_config_value("model", "MISTRAL_PROMPT_PATH")
|
61 |
+
info_prompt_path = config.get_config_value("model", "INFO_PROMPT_PATH")
|
62 |
+
peer_review_journals_path = config.get_config_value("model", "peer_review_journals_path")
|
63 |
+
eq_network_journals_path = config.get_config_value("model", "eq_network_journals_path")
|
64 |
+
queries = config.get_config_value("model", "queries")
|
65 |
+
num_criteria = len(config.get_config_value("model", "criteria"))
|
66 |
+
author_query = config.get_config_value("model", "author_query")
|
67 |
+
journal_query = config.get_config_value("model", "journal_query")
|
68 |
+
|
69 |
+
prompt_path = gpt_prompt_path if gpt_prompt_path else mistral_prompt_path
|
70 |
+
|
71 |
+
utils = base_utils()
|
72 |
+
|
73 |
+
# Check if the post request has the file part
|
74 |
+
if 'file' not in request.files:
|
75 |
+
flash('No file part')
|
76 |
+
return jsonify({'error': 'No file part given in the request'}), 500
|
77 |
+
file = request.files['file']
|
78 |
+
# If user does not select file, browser also submits an empty part without filename
|
79 |
+
if file.filename == '':
|
80 |
+
flash('No selected file')
|
81 |
+
return jsonify({'error': 'Empty filename given'}), 500
|
82 |
+
if file and allowed_file(file.filename, config.get_config_value("model", "allowed_extensions")):
|
83 |
+
try:
|
84 |
+
# Process the PDF file
|
85 |
+
pdf_processor = PDFProcessor_Unstructured(config.get_config_value("model", "pdf_processing"))
|
86 |
+
merged_chunks, tables, title = pdf_processor.process_pdf_file(file)
|
87 |
+
documents = [Document(text=t) for t in merged_chunks]
|
88 |
+
|
89 |
+
# LLM Model choice
|
90 |
+
if 'gpt' in llm_model.lower(): # TODO tested "gpt-4" and "gpt-3.5-turbo":
|
91 |
+
llm = OpenAI(model=llm_model, temperature=model_temperature, max_tokens=output_token_size)
|
92 |
+
prompt_template = utils.read_from_file(gpt_prompt_path)
|
93 |
+
|
94 |
+
elif llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
95 |
+
if any(param is None for param in
|
96 |
+
[model_context_window, output_token_size, model_temperature, hf_token]):
|
97 |
+
raise ValueError("All parameters are required for Mistral LLM.")
|
98 |
+
|
99 |
+
llm = MixtralLLM(context_window=model_context_window, num_output=output_token_size,
|
100 |
+
temperature=model_temperature, model_name=llm_model, api_key=hf_token)
|
101 |
+
prompt_template = utils.read_from_file(mistral_prompt_path)
|
102 |
+
|
103 |
+
else:
|
104 |
+
raise NotImplementedError(f"Error initializing language model '{llm_model}'")
|
105 |
+
|
106 |
+
# Embedding model choice for RAG
|
107 |
+
try:
|
108 |
+
if embed == "openai":
|
109 |
+
embed_model = OpenAIEmbedding()
|
110 |
+
|
111 |
+
elif embed == "huggingface":
|
112 |
+
if embed_model_name is None:
|
113 |
+
# Set to default model if name not provided
|
114 |
+
embed_model_name = "BAAI/bge-small-en-v1.5"
|
115 |
+
embed_model = HuggingFaceEmbedding(embed_model_name)
|
116 |
+
else:
|
117 |
+
# Use the specified model name
|
118 |
+
embed_model = HuggingFaceEmbedding(embed_model_name)
|
119 |
+
else:
|
120 |
+
raise ValueError(f"Unsupported embedding model: {embed}")
|
121 |
+
|
122 |
+
except Exception as e:
|
123 |
+
raise NotImplementedError(f"Error initializing embedding model: {e}")
|
124 |
+
|
125 |
+
# Prompts and Queries
|
126 |
+
prompt_template = utils.read_from_file(prompt_path)
|
127 |
+
info_prompt = utils.read_from_file(info_prompt_path)
|
128 |
+
|
129 |
+
peer_review_journals = utils.read_from_file(peer_review_journals_path)
|
130 |
+
eq_network_journals = utils.read_from_file(eq_network_journals_path)
|
131 |
+
|
132 |
+
peer_review_journals_list = peer_review_journals.split('\n')
|
133 |
+
eq_network_journals_list = eq_network_journals.split('\n')
|
134 |
+
|
135 |
+
modified_journal_query = "Is the given research paper published in any of the following journals: " + ", ".join(
|
136 |
+
peer_review_journals_list) + "?"
|
137 |
+
|
138 |
+
pdf_info_query = PDFQueryEngine(documents, llm, embed_model, (info_prompt))
|
139 |
+
info_query_engine = pdf_info_query.setup_query_engine()
|
140 |
+
journal_result = info_query_engine.query(modified_journal_query).response
|
141 |
+
author_info = info_query_engine.query(author_query).response
|
142 |
+
|
143 |
+
pdf_criteria_query = PDFQueryEngine(documents, llm, embed_model, (prompt_template))
|
144 |
+
|
145 |
+
# Check for prior registration
|
146 |
+
nlp_methods = KeywordSearch(merged_chunks)
|
147 |
+
eq_journal_result = nlp_methods.find_journal_name(journal_result, eq_network_journals_list)
|
148 |
+
peer_journal_result = nlp_methods.find_journal_name(journal_result, peer_review_journals_list)
|
149 |
+
registration_result = nlp_methods.check_registration()
|
150 |
+
|
151 |
+
# Evaluate with OpenAI model
|
152 |
+
total_score, criteria_met, score_percentage, reasoning, results = pdf_criteria_query.evaluate_with_llm(
|
153 |
+
registration_result, peer_journal_result, eq_journal_result, queries)
|
154 |
+
score = f"{round((total_score / num_criteria) * 100)}/100"
|
155 |
+
|
156 |
+
except Exception as e:
|
157 |
+
logging.exception("An error occurred while processing the file.")
|
158 |
+
# Consider adding a user-friendly message or redirect
|
159 |
+
flash('An error occurred while processing the file.')
|
160 |
+
return jsonify({'error': str(e)}), 500
|
161 |
+
|
162 |
+
return jsonify({
|
163 |
+
'title': title,
|
164 |
+
'author': author_info,
|
165 |
+
'score': score,
|
166 |
+
'num_criteria_met': criteria_met,
|
167 |
+
'reasoning': reasoning,
|
168 |
+
'results': results
|
169 |
+
})
|
librarymed/local/RAG_utils.py
ADDED
@@ -0,0 +1,979 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utility functions for working with the RAG model"""
|
2 |
+
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
import time
|
8 |
+
from tempfile import NamedTemporaryFile
|
9 |
+
from typing import Any, List, Tuple, Set, Dict, Optional, Union
|
10 |
+
|
11 |
+
import evaluate
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
import requests
|
15 |
+
from llama_index import PromptTemplate
|
16 |
+
from llama_index import VectorStoreIndex, ServiceContext
|
17 |
+
from llama_index import get_response_synthesizer
|
18 |
+
from llama_index.llms import (
|
19 |
+
CustomLLM,
|
20 |
+
CompletionResponse,
|
21 |
+
CompletionResponseGen,
|
22 |
+
LLMMetadata,
|
23 |
+
)
|
24 |
+
from llama_index.llms.base import llm_completion_callback
|
25 |
+
from llama_index.postprocessor import SentenceTransformerRerank
|
26 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
27 |
+
from llama_index.retrievers import BaseRetriever, BM25Retriever
|
28 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
29 |
+
from unstructured.partition.pdf import partition_pdf
|
30 |
+
from pypdf import PdfReader
|
31 |
+
|
32 |
+
|
33 |
+
# Configure basic logging
|
34 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
35 |
+
|
36 |
+
# Create a logger object
|
37 |
+
logger = logging.getLogger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
class ConfigManager:
|
41 |
+
"""
|
42 |
+
A class to manage loading and accessing configuration settings.
|
43 |
+
|
44 |
+
Attributes:
|
45 |
+
config (dict): Dictionary to hold configuration settings.
|
46 |
+
|
47 |
+
Methods:
|
48 |
+
load_config(config_path: str): Loads the configuration from a given JSON file.
|
49 |
+
get_config_value(key: str): Retrieves a specific configuration value.
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self):
|
53 |
+
self.configs = {}
|
54 |
+
|
55 |
+
def load_config(self, config_name: str, config_path: str) -> None:
|
56 |
+
"""
|
57 |
+
Loads configuration settings from a specified JSON file into a named configuration.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
config_name (str): The name to assign to this set of configurations.
|
61 |
+
config_path (str): The path to the configuration file.
|
62 |
+
|
63 |
+
Raises:
|
64 |
+
FileNotFoundError: If the config file is not found.
|
65 |
+
json.JSONDecodeError: If there is an error parsing the config file.
|
66 |
+
"""
|
67 |
+
try:
|
68 |
+
with open(config_path, 'r') as f:
|
69 |
+
self.configs[config_name] = json.load(f)
|
70 |
+
except FileNotFoundError:
|
71 |
+
logging.error(f"Config file not found at {config_path}")
|
72 |
+
raise
|
73 |
+
except json.JSONDecodeError as e:
|
74 |
+
logging.error(f"Error decoding config file: {e}")
|
75 |
+
raise
|
76 |
+
|
77 |
+
def get_config_value(self, config_name: str, key: str) -> str:
|
78 |
+
"""
|
79 |
+
Retrieves a specific configuration value.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
key (str): The key for the configuration setting.
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
str: The value of the configuration setting.
|
86 |
+
|
87 |
+
Raises:
|
88 |
+
ValueError: If the key is not found or is set to a placeholder value.
|
89 |
+
"""
|
90 |
+
value = self.configs.get(config_name, {}).get(key)
|
91 |
+
if value is None or value == "ENTER_YOUR_TOKEN_HERE":
|
92 |
+
raise ValueError(f"Please set your '{key}' in the config.json file.")
|
93 |
+
return value
|
94 |
+
|
95 |
+
|
96 |
+
class base_utils:
|
97 |
+
"""
|
98 |
+
A utility class providing miscellaneous static methods for processing and analyzing text data,
|
99 |
+
particularly from PDF documents and filenames. This class also includes methods for file operations.
|
100 |
+
|
101 |
+
This class encapsulates the functionality of extracting key information from text, such as scores,
|
102 |
+
reasoning, and IDs, locating specific data within a DataFrame based on an ID extracted from a filename,
|
103 |
+
and reading content from files.
|
104 |
+
|
105 |
+
Attributes:
|
106 |
+
None (This class contains only static methods and does not maintain any state)
|
107 |
+
|
108 |
+
Methods:
|
109 |
+
extract_score_reasoning(text: str) -> Dict[str, Optional[str]]:
|
110 |
+
Extracts a score and reasoning from a given text using regular expressions.
|
111 |
+
|
112 |
+
extract_id_from_filename(filename: str) -> Optional[int]:
|
113 |
+
Extracts an ID from a given filename based on a specified pattern.
|
114 |
+
|
115 |
+
find_row_for_pdf(pdf_filename: str, dataframe: pd.DataFrame) -> Union[pd.Series, str]:
|
116 |
+
Searches for a row in a DataFrame that matches an ID extracted from a PDF filename.
|
117 |
+
|
118 |
+
read_from_file(file_path: str) -> str:
|
119 |
+
Reads the content of a file and returns it as a string.
|
120 |
+
"""
|
121 |
+
|
122 |
+
@staticmethod
|
123 |
+
def read_from_file(file_path: str) -> str:
|
124 |
+
"""
|
125 |
+
Reads the content of a file and returns it as a string.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
file_path (str): The path to the file to be read.
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
str: The content of the file.
|
132 |
+
"""
|
133 |
+
with open(file_path, 'r') as prompt_file:
|
134 |
+
prompt = prompt_file.read()
|
135 |
+
return prompt
|
136 |
+
|
137 |
+
@staticmethod
|
138 |
+
def extract_id_from_filename(filename: str) -> Optional[int]:
|
139 |
+
"""
|
140 |
+
Extracts an ID from a filename, assuming a specific format ('Id_{I}.pdf', where {I} is the ID).
|
141 |
+
|
142 |
+
Args:
|
143 |
+
filename (str): The filename from which to extract the ID.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
int: The extracted ID as an integer, or None if the pattern is not found.
|
147 |
+
"""
|
148 |
+
# Assuming the file name is in the format 'Id_{I}.pdf', where {I} is the ID
|
149 |
+
match = re.search(r'Id_(\d+).pdf', filename)
|
150 |
+
if match:
|
151 |
+
return int(match.group(1)) # Convert to integer if ID is numeric
|
152 |
+
else:
|
153 |
+
return None
|
154 |
+
|
155 |
+
@staticmethod
|
156 |
+
def extract_score_reasoning(text: str) -> Dict[str, Optional[str]]:
|
157 |
+
"""
|
158 |
+
Extracts score and reasoning from a given text using regular expressions.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
text (str): The text from which to extract the score and reasoning.
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
dict: A dictionary containing 'score' and 'reasoning', extracted from the text.
|
165 |
+
"""
|
166 |
+
# Define regular expression patterns for score and reasoning
|
167 |
+
score_pattern = r"Score: (\d+)"
|
168 |
+
reasoning_pattern = r"Reasoning: (.+)"
|
169 |
+
|
170 |
+
# Extract data using regular expressions
|
171 |
+
score_match = re.search(score_pattern, text)
|
172 |
+
reasoning_match = re.search(reasoning_pattern, text, re.DOTALL) # re.DOTALL allows '.' to match newlines
|
173 |
+
|
174 |
+
# Extract and return the results
|
175 |
+
extracted_data = {
|
176 |
+
"score": score_match.group(1) if score_match else None,
|
177 |
+
"reasoning": reasoning_match.group(1).strip() if reasoning_match else None
|
178 |
+
}
|
179 |
+
|
180 |
+
return extracted_data
|
181 |
+
|
182 |
+
@staticmethod
|
183 |
+
def find_row_for_pdf(pdf_filename: str, dataframe: pd.DataFrame) -> Union[pd.Series, str]:
|
184 |
+
"""
|
185 |
+
Finds the row in a dataframe corresponding to the ID extracted from a given PDF filename.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
pdf_filename (str): The filename of the PDF.
|
189 |
+
dataframe (pandas.DataFrame): The dataframe in which to find the corresponding row.
|
190 |
+
|
191 |
+
Returns:
|
192 |
+
pandas.Series or str: The matched row from the dataframe or a message indicating
|
193 |
+
that no matching row or invalid filename was found.
|
194 |
+
"""
|
195 |
+
pdf_id = Utility.extract_id_from_filename(pdf_filename)
|
196 |
+
if pdf_id is not None:
|
197 |
+
# Assuming the first column contains the ID
|
198 |
+
matched_row = dataframe[dataframe.iloc[:, 0] == pdf_id]
|
199 |
+
if not matched_row.empty:
|
200 |
+
return matched_row
|
201 |
+
else:
|
202 |
+
return "No matching row found."
|
203 |
+
else:
|
204 |
+
return "Invalid file name."
|
205 |
+
|
206 |
+
|
207 |
+
class PDFProcessor_Unstructured:
|
208 |
+
"""
|
209 |
+
A class to process PDF files, providing functionalities for extracting, categorizing,
|
210 |
+
and merging elements from a PDF file.
|
211 |
+
|
212 |
+
This class is designed to handle unstructured PDF documents, particularly useful for
|
213 |
+
tasks involving text extraction, categorization, and data processing within PDFs.
|
214 |
+
|
215 |
+
Attributes:
|
216 |
+
file_path (str): The full path to the PDF file.
|
217 |
+
folder_path (str): The directory path where the PDF file is located.
|
218 |
+
file_name (str): The name of the PDF file.
|
219 |
+
texts (List[str]): A list to store extracted text chunks.
|
220 |
+
tables (List[str]): A list to store extracted tables.
|
221 |
+
|
222 |
+
|
223 |
+
Methods:
|
224 |
+
extract_pdf_elements() -> List:
|
225 |
+
Extracts images, tables, and text chunks from a PDF file.
|
226 |
+
|
227 |
+
categorize_elements(raw_pdf_elements: List) -> None:
|
228 |
+
Categorizes extracted elements from a PDF into tables and texts.
|
229 |
+
|
230 |
+
merge_chunks() -> List[str]:
|
231 |
+
Merges text chunks based on punctuation and character case criteria.
|
232 |
+
|
233 |
+
should_skip_chunk(chunk: str) -> bool:
|
234 |
+
Determines if a chunk should be skipped based on its content.
|
235 |
+
|
236 |
+
should_merge_with_next(current_chunk: str, next_chunk: str) -> bool:
|
237 |
+
Determines if the current chunk should be merged with the next one.
|
238 |
+
|
239 |
+
process_pdf() -> Tuple[List[str], List[str]]:
|
240 |
+
Processes the PDF by extracting, categorizing, and merging elements.
|
241 |
+
|
242 |
+
process_pdf_file(uploaded_file) -> Tuple[List[str], List[str]]:
|
243 |
+
Processes an uploaded PDF file to extract and categorize text and tables.
|
244 |
+
"""
|
245 |
+
|
246 |
+
def __init__(self, config: Dict[str, any]):
|
247 |
+
self.file_path = None
|
248 |
+
self.folder_path = None
|
249 |
+
self.file_name = None
|
250 |
+
self.texts = []
|
251 |
+
self.tables = []
|
252 |
+
self.config = config if config is not None else self.default_config()
|
253 |
+
logger.info(f"Initialized PdfProcessor_Unstructured for file: {self.file_name}")
|
254 |
+
|
255 |
+
@staticmethod
|
256 |
+
def default_config() -> Dict[str, any]:
|
257 |
+
"""
|
258 |
+
Returns the default configuration for PDF processing.
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
Dict[str, any]: Default configuration options.
|
262 |
+
"""
|
263 |
+
return {
|
264 |
+
"extract_images": False,
|
265 |
+
"infer_table_structure": True,
|
266 |
+
"chunking_strategy": "by_title",
|
267 |
+
"max_characters": 10000,
|
268 |
+
"combine_text_under_n_chars": 100,
|
269 |
+
"strategy": "auto",
|
270 |
+
"model_name": "yolox"
|
271 |
+
}
|
272 |
+
|
273 |
+
def extract_pdf_elements(self) -> List:
|
274 |
+
"""
|
275 |
+
Extracts images, tables, and text chunks from a PDF file.
|
276 |
+
|
277 |
+
Returns:
|
278 |
+
List: A list of extracted elements from the PDF.
|
279 |
+
"""
|
280 |
+
logger.info("Starting extraction of PDF elements.")
|
281 |
+
try:
|
282 |
+
extracted_elements = partition_pdf(
|
283 |
+
filename=self.file_path,
|
284 |
+
extract_images_in_pdf=False,
|
285 |
+
infer_table_structure=True,
|
286 |
+
chunking_strategy="by_title",
|
287 |
+
max_characters=10000,
|
288 |
+
combine_text_under_n_chars=100,
|
289 |
+
image_output_dir_path=self.folder_path,
|
290 |
+
# strategy="fast",
|
291 |
+
)
|
292 |
+
logger.info("Extraction of PDF elements completed successfully.")
|
293 |
+
return extracted_elements
|
294 |
+
except Exception as e:
|
295 |
+
raise NotImplementedError(f"Error extracting PDF elements: {e}")
|
296 |
+
|
297 |
+
def categorize_elements(self, raw_pdf_elements: List) -> None:
|
298 |
+
"""
|
299 |
+
Categorizes extracted elements from a PDF into tables and texts.
|
300 |
+
|
301 |
+
Args:
|
302 |
+
raw_pdf_elements (List): A list of elements extracted from the PDF.
|
303 |
+
"""
|
304 |
+
logger.debug("Starting categorization of PDF elements.")
|
305 |
+
for element in raw_pdf_elements:
|
306 |
+
element_type = str(type(element))
|
307 |
+
if "unstructured.documents.elements.Table" in element_type:
|
308 |
+
self.tables.append(str(element))
|
309 |
+
elif "unstructured.documents.elements.CompositeElement" in element_type:
|
310 |
+
self.texts.append(str(element))
|
311 |
+
|
312 |
+
logger.debug("Categorization of PDF elements completed.")
|
313 |
+
|
314 |
+
def merge_chunks(self) -> List[str]:
|
315 |
+
"""
|
316 |
+
Merges text chunks based on punctuation and character case criteria.
|
317 |
+
|
318 |
+
Returns:
|
319 |
+
List[str]: A list of merged text chunks.
|
320 |
+
"""
|
321 |
+
logger.debug("Starting merging of text chunks.")
|
322 |
+
|
323 |
+
merged_chunks = []
|
324 |
+
skip_next = False
|
325 |
+
|
326 |
+
for i, current_chunk in enumerate(self.texts[:-1]):
|
327 |
+
next_chunk = self.texts[i + 1]
|
328 |
+
|
329 |
+
if self.should_skip_chunk(current_chunk):
|
330 |
+
continue
|
331 |
+
|
332 |
+
if self.should_merge_with_next(current_chunk, next_chunk):
|
333 |
+
merged_chunks.append(current_chunk + " " + next_chunk)
|
334 |
+
skip_next = True
|
335 |
+
else:
|
336 |
+
merged_chunks.append(current_chunk)
|
337 |
+
|
338 |
+
if not skip_next:
|
339 |
+
merged_chunks.append(self.texts[-1])
|
340 |
+
|
341 |
+
logger.debug("Merging of text chunks completed.")
|
342 |
+
|
343 |
+
return merged_chunks
|
344 |
+
|
345 |
+
@staticmethod
|
346 |
+
def should_skip_chunk(chunk: str) -> bool:
|
347 |
+
"""
|
348 |
+
Determines if a chunk should be skipped based on its content.
|
349 |
+
|
350 |
+
Args:
|
351 |
+
chunk (str): The text chunk to be evaluated.
|
352 |
+
|
353 |
+
Returns:
|
354 |
+
bool: True if the chunk should be skipped, False otherwise.
|
355 |
+
"""
|
356 |
+
return (chunk.lower().startswith(("figure", "fig", "table")) or
|
357 |
+
not chunk[0].isalnum() or
|
358 |
+
re.match(r'^\d+\.', chunk))
|
359 |
+
|
360 |
+
@staticmethod
|
361 |
+
def should_merge_with_next(current_chunk: str, next_chunk: str) -> bool:
|
362 |
+
"""
|
363 |
+
Determines if the current chunk should be merged with the next one.
|
364 |
+
|
365 |
+
Args:
|
366 |
+
current_chunk (str): The current text chunk.
|
367 |
+
next_chunk (str): The next text chunk.
|
368 |
+
|
369 |
+
Returns:
|
370 |
+
bool: True if the chunks should be merged, False otherwise.
|
371 |
+
"""
|
372 |
+
return (current_chunk.endswith(",") or
|
373 |
+
(current_chunk[-1].islower() and next_chunk[0].islower()))
|
374 |
+
|
375 |
+
def process_pdf(self) -> Tuple[List[str], List[str]]:
|
376 |
+
"""
|
377 |
+
Processes the PDF by extracting, categorizing, and merging elements.
|
378 |
+
|
379 |
+
Returns:
|
380 |
+
Tuple[List[str], List[str]]: A tuple of merged text chunks and tables.
|
381 |
+
is_research_paper: A boolean indicating if the paper is a research paper or not.
|
382 |
+
"""
|
383 |
+
is_review_paper = False
|
384 |
+
logger.info("Starting processing of the PDF.")
|
385 |
+
try:
|
386 |
+
time_extract = time.time()
|
387 |
+
raw_pdf_elements = self.extract_pdf_elements()
|
388 |
+
logger.info(
|
389 |
+
f">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> PDF elements extracted in {time.time() - time_extract:.2f} seconds.")
|
390 |
+
|
391 |
+
time_review = time.time()
|
392 |
+
for element in raw_pdf_elements:
|
393 |
+
text = element.text.split()
|
394 |
+
for word in text:
|
395 |
+
if word.lower() == 'review':
|
396 |
+
logger.warning("!!! this seems to be a review paper and not a research paper. this demo "
|
397 |
+
"analyses only research papers.")
|
398 |
+
is_review_paper = True
|
399 |
+
logging.info(
|
400 |
+
f">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> PDF review check completed in {time.time() - time_review:.2f} seconds.")
|
401 |
+
|
402 |
+
time_categorize = time.time()
|
403 |
+
self.categorize_elements(raw_pdf_elements)
|
404 |
+
logger.info(
|
405 |
+
f">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> PDF elements categorized in {time.time() - time_categorize:.2f} seconds.")
|
406 |
+
|
407 |
+
time_merge = time.time()
|
408 |
+
merged_chunks = self.merge_chunks()
|
409 |
+
logger.info(
|
410 |
+
f">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> PDF text chunks merged in {time.time() - time_merge:.2f} seconds.")
|
411 |
+
return merged_chunks, self.tables
|
412 |
+
except Exception as e:
|
413 |
+
raise NotImplementedError(f"Error processing PDF: {e}")
|
414 |
+
|
415 |
+
def process_pdf_file(self, uploaded_file):
|
416 |
+
"""
|
417 |
+
Process an uploaded PDF file.
|
418 |
+
|
419 |
+
If a new file is uploaded, the previously stored file is deleted.
|
420 |
+
The method updates the file path, processes the PDF, and returns the results.
|
421 |
+
|
422 |
+
Parameters:
|
423 |
+
uploaded_file: The new PDF file uploaded for processing.
|
424 |
+
|
425 |
+
Returns:
|
426 |
+
The results of processing the PDF file.
|
427 |
+
"""
|
428 |
+
|
429 |
+
logger.info(f"Starting to process the PDF file: {uploaded_file.filename}")
|
430 |
+
|
431 |
+
with NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
|
432 |
+
uploaded_file.save(temp_file.name)
|
433 |
+
self.file_path = temp_file.name
|
434 |
+
self.folder_path = os.path.dirname(self.file_path)
|
435 |
+
|
436 |
+
try:
|
437 |
+
logger.debug(f"Processing PDF at {self.file_path}")
|
438 |
+
results = self.process_pdf()
|
439 |
+
title = self.extract_title_from_pdf(self.file_path)
|
440 |
+
logger.info("PDF processing completed successfully.")
|
441 |
+
return (*results, title)
|
442 |
+
|
443 |
+
except Exception as e:
|
444 |
+
logger.error(f"Error processing PDF file: {e}", exc_info=True)
|
445 |
+
raise
|
446 |
+
finally:
|
447 |
+
try:
|
448 |
+
os.remove(self.file_path)
|
449 |
+
logger.debug(f"Temporary file {self.file_path} deleted.")
|
450 |
+
except Exception as e:
|
451 |
+
logger.warning(f"Error deleting temporary file: {e}", exc_info=True)
|
452 |
+
|
453 |
+
def extract_title_from_pdf(self, uploaded_file):
|
454 |
+
"""
|
455 |
+
Extracts the title from a PDF file's metadata.
|
456 |
+
|
457 |
+
This function reads the metadata of a PDF file using PyPDF2 and attempts to
|
458 |
+
extract the title. If the title is present in the metadata, it is returned.
|
459 |
+
Otherwise, a default message indicating that the title was not found is returned.
|
460 |
+
|
461 |
+
Parameters:
|
462 |
+
uploaded_file (file): A file object or a path to the PDF file from which
|
463 |
+
to extract the title. The file must be opened in binary mode.
|
464 |
+
|
465 |
+
Returns:
|
466 |
+
str: The title of the PDF file as a string. If no title is found, returns
|
467 |
+
'Title not found'.
|
468 |
+
"""
|
469 |
+
# Initialize PDF reader
|
470 |
+
pdf_reader = PdfReader(uploaded_file)
|
471 |
+
|
472 |
+
# Extract document information
|
473 |
+
meta = pdf_reader.metadata
|
474 |
+
|
475 |
+
# Retrieve title from document information
|
476 |
+
title = meta.title if meta and meta.title else 'Title not found'
|
477 |
+
return title
|
478 |
+
|
479 |
+
|
480 |
+
|
481 |
+
|
482 |
+
class HybridRetriever(BaseRetriever):
|
483 |
+
"""
|
484 |
+
A hybrid retriever that combines results from vector-based and BM25 retrieval methods.
|
485 |
+
Inherits from BaseRetriever.
|
486 |
+
|
487 |
+
This class uses two different retrieval methods and merges their results to provide a
|
488 |
+
comprehensive set of documents in response to a query. It ensures diversity in the
|
489 |
+
retrieved documents by leveraging the strengths of both retrieval methods.
|
490 |
+
|
491 |
+
Attributes:
|
492 |
+
vector_retriever: An instance of a vector-based retriever.
|
493 |
+
bm25_retriever: An instance of a BM25 retriever.
|
494 |
+
|
495 |
+
Methods:
|
496 |
+
__init__(vector_retriever, bm25_retriever): Initializes the HybridRetriever with vector and BM25 retrievers.
|
497 |
+
_retrieve(query, **kwargs): Performs the retrieval operation by combining results from both retrievers.
|
498 |
+
_combine_results(bm25_nodes, vector_nodes): Combines and de-duplicates the results from both retrievers.
|
499 |
+
"""
|
500 |
+
|
501 |
+
def __init__(self, vector_retriever, bm25_retriever):
|
502 |
+
super().__init__()
|
503 |
+
self.vector_retriever = vector_retriever
|
504 |
+
self.bm25_retriever = bm25_retriever
|
505 |
+
logger.info("HybridRetriever initialized with vector and BM25 retrievers.")
|
506 |
+
|
507 |
+
def _retrieve(self, query: str, **kwargs) -> List:
|
508 |
+
"""
|
509 |
+
Retrieves and combines results from both vector and BM25 retrievers.
|
510 |
+
|
511 |
+
Args:
|
512 |
+
query: The query string for document retrieval.
|
513 |
+
**kwargs: Additional keyword arguments for retrieval.
|
514 |
+
|
515 |
+
Returns:
|
516 |
+
List: Combined list of unique nodes retrieved from both methods.
|
517 |
+
"""
|
518 |
+
logger.info(f"Retrieving documents for query: {query}")
|
519 |
+
try:
|
520 |
+
bm25_nodes = self.bm25_retriever.retrieve(query, **kwargs)
|
521 |
+
vector_nodes = self.vector_retriever.retrieve(query, **kwargs)
|
522 |
+
combined_nodes = self._combine_results(bm25_nodes, vector_nodes)
|
523 |
+
|
524 |
+
logger.info(f"Retrieved {len(combined_nodes)} unique nodes combining vector and BM25 retrievers.")
|
525 |
+
return combined_nodes
|
526 |
+
except Exception as e:
|
527 |
+
logger.error(f"Error in retrieval: {e}")
|
528 |
+
raise
|
529 |
+
|
530 |
+
@staticmethod
|
531 |
+
def _combine_results(bm25_nodes: List, vector_nodes: List) -> List:
|
532 |
+
"""
|
533 |
+
Combines and de-duplicates results from BM25 and vector retrievers.
|
534 |
+
|
535 |
+
Args:
|
536 |
+
bm25_nodes: Nodes retrieved from BM25 retriever.
|
537 |
+
vector_nodes: Nodes retrieved from vector retriever.
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
List: Combined list of unique nodes.
|
541 |
+
"""
|
542 |
+
node_ids: Set = set()
|
543 |
+
combined_nodes = []
|
544 |
+
|
545 |
+
for node in bm25_nodes + vector_nodes:
|
546 |
+
if node.node_id not in node_ids:
|
547 |
+
combined_nodes.append(node)
|
548 |
+
node_ids.add(node.node_id)
|
549 |
+
|
550 |
+
return combined_nodes
|
551 |
+
|
552 |
+
|
553 |
+
class PDFQueryEngine:
|
554 |
+
"""
|
555 |
+
A class to handle the process of setting up a query engine and performing queries on PDF documents.
|
556 |
+
|
557 |
+
This class encapsulates the functionality of creating prompt templates, embedding models, service contexts,
|
558 |
+
indexes, hybrid retrievers, response synthesizers, and executing queries on the set up engine.
|
559 |
+
|
560 |
+
Attributes:
|
561 |
+
documents (List): A list of documents to be indexed.
|
562 |
+
llm (Language Model): The language model to be used for embeddings and queries.
|
563 |
+
qa_prompt_tmpl (str): Template for creating query prompts.
|
564 |
+
queries (List[str]): List of queries to be executed.
|
565 |
+
|
566 |
+
Methods:
|
567 |
+
setup_query_engine(): Sets up the query engine with all necessary components.
|
568 |
+
execute_queries(): Executes the predefined queries and prints the results.
|
569 |
+
"""
|
570 |
+
|
571 |
+
def __init__(self, documents: List[Any], llm: Any, embed_model: Any, qa_prompt_tmpl: Any):
|
572 |
+
|
573 |
+
self.documents = documents
|
574 |
+
self.llm = llm
|
575 |
+
self.embed_model = embed_model
|
576 |
+
self.qa_prompt_tmpl = qa_prompt_tmpl
|
577 |
+
self.base_utils = base_utils()
|
578 |
+
|
579 |
+
logger.info("PDFQueryEngine initialized.")
|
580 |
+
|
581 |
+
def setup_query_engine(self):
|
582 |
+
"""
|
583 |
+
Sets up the query engine by initializing and configuring the embedding model, service context, index,
|
584 |
+
hybrid retriever (combining vector and BM25 retrievers), and the response synthesizer.
|
585 |
+
|
586 |
+
Args:
|
587 |
+
embed_model: The embedding model to be used.
|
588 |
+
service_context: The context for providing services to the query engine.
|
589 |
+
index: The index used for storing and retrieving documents.
|
590 |
+
hybrid_retriever: The retriever that combines vector and BM25 retrieval methods.
|
591 |
+
response_synthesizer: The synthesizer for generating responses to queries.
|
592 |
+
|
593 |
+
Returns:
|
594 |
+
Any: The configured query engine.
|
595 |
+
"""
|
596 |
+
|
597 |
+
try:
|
598 |
+
logger.info("Initializing the service context for query engine setup.")
|
599 |
+
service_context = ServiceContext.from_defaults(llm=self.llm, embed_model=self.embed_model)
|
600 |
+
|
601 |
+
logger.info("Creating an index from documents.")
|
602 |
+
index = VectorStoreIndex.from_documents(documents=self.documents, service_context=service_context)
|
603 |
+
nodes = service_context.node_parser.get_nodes_from_documents(self.documents)
|
604 |
+
|
605 |
+
logger.info("Setting up vector and BM25 retrievers.")
|
606 |
+
vector_retriever = index.as_retriever(similarity_top_k=5)
|
607 |
+
bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=5)
|
608 |
+
hybrid_retriever = HybridRetriever(vector_retriever, bm25_retriever)
|
609 |
+
|
610 |
+
logger.info("Configuring the response synthesizer with the prompt template.")
|
611 |
+
qa_prompt = PromptTemplate(self.qa_prompt_tmpl)
|
612 |
+
response_synthesizer = get_response_synthesizer(
|
613 |
+
service_context=service_context,
|
614 |
+
text_qa_template=qa_prompt,
|
615 |
+
response_mode="compact",
|
616 |
+
)
|
617 |
+
|
618 |
+
logger.info("Assembling the query engine with reranker and synthesizer.")
|
619 |
+
reranker = SentenceTransformerRerank(top_n=4, model="BAAI/bge-reranker-base")
|
620 |
+
query_engine = RetrieverQueryEngine.from_args(
|
621 |
+
retriever=hybrid_retriever,
|
622 |
+
node_postprocessors=[reranker],
|
623 |
+
response_synthesizer=response_synthesizer,
|
624 |
+
)
|
625 |
+
|
626 |
+
logger.info("Query engine setup complete.")
|
627 |
+
return query_engine
|
628 |
+
except Exception as e:
|
629 |
+
logger.error(f"Error during query engine setup: {e}")
|
630 |
+
raise
|
631 |
+
|
632 |
+
def evaluate_with_llm(self, reg_result: Any, peer_result: Any, guidelines_result: Any, queries: List[str]) -> Tuple[
|
633 |
+
int, List[int], int, float, List[str]]:
|
634 |
+
"""
|
635 |
+
Evaluate documents using a language model based on various criteria.
|
636 |
+
|
637 |
+
Args:
|
638 |
+
reg_result (Any): Result related to registration.
|
639 |
+
peer_result (Any): Result related to peer review.
|
640 |
+
guidelines_result (Any): Result related to following guidelines.
|
641 |
+
queries (List[str]): A list of queries to be processed.
|
642 |
+
|
643 |
+
Returns:
|
644 |
+
Tuple[int, List[int], int, float, List[str]]: A tuple containing the total score, a list of scores per criteria,
|
645 |
+
"""
|
646 |
+
|
647 |
+
logger.info("Starting evaluation with LLM.")
|
648 |
+
query_engine = self.setup_query_engine()
|
649 |
+
|
650 |
+
total_score = 0
|
651 |
+
criteria_met = 0
|
652 |
+
reasoning = []
|
653 |
+
|
654 |
+
for j, query in enumerate(queries):
|
655 |
+
# Predefine extracted_data to handle the default case
|
656 |
+
extracted_data = None
|
657 |
+
|
658 |
+
# Handle special cases based on the value of j and other conditions
|
659 |
+
if j == 1 and reg_result:
|
660 |
+
extracted_data = {"score": 1, "reasoning": reg_result[0]}
|
661 |
+
elif j == 2 and guidelines_result:
|
662 |
+
extracted_data = {"score": 1,
|
663 |
+
"reasoning": "The article is published in a journal following EQUATOR-NETWORK reporting guidelines"}
|
664 |
+
elif j == 8 and (guidelines_result or peer_result):
|
665 |
+
extracted_data = {"score": 1, "reasoning": "The article is published in a peer reviewed journal."}
|
666 |
+
|
667 |
+
# Handle the default case if none of the special conditions were met
|
668 |
+
if extracted_data is None:
|
669 |
+
result = query_engine.query(query).response
|
670 |
+
extracted_data = self.base_utils.extract_score_reasoning(result)
|
671 |
+
|
672 |
+
if extracted_data['score'] and int(extracted_data["score"]) > 0:
|
673 |
+
criteria_met += 1
|
674 |
+
total_score += int(extracted_data["score"])
|
675 |
+
reasoning.append(extracted_data["reasoning"])
|
676 |
+
|
677 |
+
score_percentage = (float(total_score) / len(queries)) * 100
|
678 |
+
logger.info("Evaluation completed.")
|
679 |
+
return total_score, criteria_met, score_percentage, reasoning
|
680 |
+
|
681 |
+
|
682 |
+
class MixtralLLM(CustomLLM):
|
683 |
+
"""
|
684 |
+
A custom language model class for interfacing with the Hugging Face API, specifically using the Mixtral model.
|
685 |
+
|
686 |
+
Attributes:
|
687 |
+
context_window (int): Number of tokens used for context during inference.
|
688 |
+
num_output (int): Number of tokens to generate as output.
|
689 |
+
temperature (float): Sampling temperature for token generation.
|
690 |
+
model_name (str): Name of the model on Hugging Face's model hub.
|
691 |
+
api_key (str): API key for authenticating with the Hugging Face API.
|
692 |
+
|
693 |
+
Methods:
|
694 |
+
metadata: Retrieves metadata about the model.
|
695 |
+
do_hf_call: Makes an API call to the Hugging Face model.
|
696 |
+
complete: Generates a complete response for a given prompt.
|
697 |
+
stream_complete: Streams a series of token completions for a given prompt.
|
698 |
+
"""
|
699 |
+
|
700 |
+
def __init__(self, context_window: int, num_output: int, temperature: float, model_name: str, api_key: str):
|
701 |
+
"""
|
702 |
+
Initialize the MixtralLLM class with specific configuration values.
|
703 |
+
|
704 |
+
Args:
|
705 |
+
context_window (int): The number of tokens to consider for context during LLM inference.
|
706 |
+
num_output (int): The number of tokens to generate in the output.
|
707 |
+
temperature (float): The sampling temperature to use for generating tokens.
|
708 |
+
model_name (str): The name of the model to be used from Hugging Face's model hub.
|
709 |
+
api_key (str): The API key for authentication with Hugging Face's inference API.
|
710 |
+
"""
|
711 |
+
super().__init__()
|
712 |
+
self.context_window = context_window
|
713 |
+
self.num_output = num_output
|
714 |
+
self.temperature = temperature
|
715 |
+
self.model_name = model_name
|
716 |
+
self.api_key = api_key
|
717 |
+
|
718 |
+
@property
|
719 |
+
def metadata(self) -> LLMMetadata:
|
720 |
+
"""
|
721 |
+
Retrieves metadata for the Mixtral LLM.
|
722 |
+
|
723 |
+
Returns:
|
724 |
+
LLMMetadata: An object containing metadata such as context window, number of outputs, and model name.
|
725 |
+
"""
|
726 |
+
return LLMMetadata(
|
727 |
+
context_window=self.context_window,
|
728 |
+
num_output=self.num_output,
|
729 |
+
model_name=self.model_name,
|
730 |
+
)
|
731 |
+
|
732 |
+
def do_hf_call(self, prompt: str) -> str:
|
733 |
+
"""
|
734 |
+
Makes an API call to the Hugging Face model and retrieves the generated response.
|
735 |
+
|
736 |
+
Args:
|
737 |
+
prompt (str): The input prompt for the model.
|
738 |
+
|
739 |
+
Returns:
|
740 |
+
str: The text generated by the model in response to the prompt.
|
741 |
+
|
742 |
+
Raises:
|
743 |
+
Exception: If the API call fails or returns an error.
|
744 |
+
"""
|
745 |
+
data = {
|
746 |
+
"inputs": prompt,
|
747 |
+
"parameters": {"Temperature": self.temperature}
|
748 |
+
}
|
749 |
+
|
750 |
+
# Makes a POST request to the Hugging Face API to get the model's response
|
751 |
+
response = requests.post(
|
752 |
+
f'https://api-inference.huggingface.co/models/{self.model_name}',
|
753 |
+
headers={
|
754 |
+
'authorization': f'Bearer {self.api_key}',
|
755 |
+
'content-type': 'application/json',
|
756 |
+
},
|
757 |
+
json=data,
|
758 |
+
stream=True
|
759 |
+
)
|
760 |
+
|
761 |
+
# Checks for a successful response and parses the generated text
|
762 |
+
if response.status_code != 200 or not response.json() or 'error' in response.json():
|
763 |
+
print(f"Error: {response}")
|
764 |
+
return "Unable to answer for technical reasons."
|
765 |
+
full_txt = response.json()[0]['generated_text']
|
766 |
+
# Finds the section of the text following the context separator
|
767 |
+
offset = full_txt.find("---------------------")
|
768 |
+
ss = full_txt[offset:]
|
769 |
+
# Extracts the actual answer from the response
|
770 |
+
offset = ss.find("Answer:")
|
771 |
+
return ss[offset + 7:].strip()
|
772 |
+
|
773 |
+
@llm_completion_callback()
|
774 |
+
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
|
775 |
+
"""
|
776 |
+
Generates a complete response for a given prompt using the Hugging Face API.
|
777 |
+
|
778 |
+
Args:
|
779 |
+
prompt (str): The input prompt for the model.
|
780 |
+
**kwargs: Additional keyword arguments for the completion.
|
781 |
+
|
782 |
+
Returns:
|
783 |
+
CompletionResponse: The complete response from the model.
|
784 |
+
"""
|
785 |
+
response = self.do_hf_call(prompt)
|
786 |
+
return CompletionResponse(text=response)
|
787 |
+
|
788 |
+
@llm_completion_callback()
|
789 |
+
def stream_complete(
|
790 |
+
self, prompt: str, **kwargs: Any
|
791 |
+
) -> CompletionResponseGen:
|
792 |
+
"""
|
793 |
+
Streams a series of token completions as a response for the given prompt.
|
794 |
+
|
795 |
+
This method is useful for streaming responses where each token is generated sequentially.
|
796 |
+
|
797 |
+
Args:
|
798 |
+
prompt (str): The input prompt for the model.
|
799 |
+
**kwargs: Additional keyword arguments for the streaming completion.
|
800 |
+
|
801 |
+
Yields:
|
802 |
+
CompletionResponseGen: A generator yielding each token in the completion response.
|
803 |
+
"""
|
804 |
+
# Yields a stream of tokens as the completion response for the given prompt
|
805 |
+
response = ""
|
806 |
+
for token in self.do_hf_call(prompt):
|
807 |
+
response += token
|
808 |
+
yield CompletionResponse(text=response, delta=token)
|
809 |
+
|
810 |
+
|
811 |
+
class KeywordSearch():
|
812 |
+
def __init__(self, chunks):
|
813 |
+
self.chunks = chunks
|
814 |
+
|
815 |
+
def find_journal_name(self, response: str, journal_list: list) -> str:
|
816 |
+
"""
|
817 |
+
Searches for a journal name in a given response string.
|
818 |
+
|
819 |
+
This function iterates through a list of known journal names and checks if any of these
|
820 |
+
names are present in the response string. It returns the first journal name found in the
|
821 |
+
response. If no journal names from the list are found in the response, a default message
|
822 |
+
indicating that the journal name was not found is returned.
|
823 |
+
|
824 |
+
Args:
|
825 |
+
response (str): The response string to search for a journal name.
|
826 |
+
journal_list (list): A list of journal names to search within the response.
|
827 |
+
|
828 |
+
Returns:
|
829 |
+
str: The first journal name found in the response, or a default message if no journal name is found.
|
830 |
+
"""
|
831 |
+
response_lower = response.lower()
|
832 |
+
for journal in journal_list:
|
833 |
+
journal_lower = journal.lower()
|
834 |
+
|
835 |
+
if journal_lower in response_lower:
|
836 |
+
return True
|
837 |
+
|
838 |
+
return False
|
839 |
+
|
840 |
+
def check_registration(self):
|
841 |
+
"""
|
842 |
+
Check chunks of text for various registration numbers or URLs of registries.
|
843 |
+
Returns the sentence containing a registration number, or if not found,
|
844 |
+
returns chunks containing registry URLs.
|
845 |
+
|
846 |
+
Args:
|
847 |
+
chunks (list of str): List of text chunks to search.
|
848 |
+
|
849 |
+
Returns:
|
850 |
+
list of str: List of matching sentences or chunks, or an empty list if no matches are found.
|
851 |
+
"""
|
852 |
+
|
853 |
+
# Patterns for different registration types
|
854 |
+
patterns = {
|
855 |
+
"NCT": r"\(?(NCT#?\s*(No\s*)?)(\d{8})\)?",
|
856 |
+
"ISRCTN": r"(ISRCTN\d{8})",
|
857 |
+
"EudraCT": r"(\d{4}-\d{6}-\d{2})",
|
858 |
+
"UMIN-CTR": r"(UMIN\d{9})",
|
859 |
+
"CTRI": r"(CTRI/\d{4}/\d{2}/\d{6})"
|
860 |
+
}
|
861 |
+
|
862 |
+
# Registry URLs
|
863 |
+
registry_urls = [
|
864 |
+
"www.anzctr.org.au",
|
865 |
+
"anzctr.org.au",
|
866 |
+
"www.clinicaltrials.gov",
|
867 |
+
"clinicaltrials.gov",
|
868 |
+
"www.ISRCTN.org",
|
869 |
+
"ISRCTN.org",
|
870 |
+
"www.umin.ac.jp/ctr/index/htm",
|
871 |
+
"umin.ac.jp/ctr/index/htm",
|
872 |
+
"www.onderzoekmetmensen.nl/en",
|
873 |
+
"onderzoekmetmensen.nl/en",
|
874 |
+
"eudract.ema.europa.eu",
|
875 |
+
"www.eudract.ema.europa.eu"
|
876 |
+
]
|
877 |
+
|
878 |
+
# Check each chunk for registration numbers
|
879 |
+
for chunk in self.chunks:
|
880 |
+
# Split chunk into sentences
|
881 |
+
sentences = re.split(r'(?<=[.!?]) +', chunk)
|
882 |
+
|
883 |
+
# Check each sentence for any registration number
|
884 |
+
for sentence in sentences:
|
885 |
+
for pattern in patterns.values():
|
886 |
+
if re.search(pattern, sentence):
|
887 |
+
return [sentence] # Return immediately if a registration number is found
|
888 |
+
|
889 |
+
# If no registration number found, check for URLs in chunks
|
890 |
+
matching_chunks = []
|
891 |
+
for chunk in self.chunks:
|
892 |
+
if any(url in chunk for url in registry_urls):
|
893 |
+
matching_chunks.append(chunk)
|
894 |
+
|
895 |
+
return matching_chunks
|
896 |
+
|
897 |
+
|
898 |
+
class StringExtraction():
|
899 |
+
"""
|
900 |
+
A class to handle the the process of extraction of query string from complete LLM responses.
|
901 |
+
|
902 |
+
This class encapsulates the functionality of extracting original ground truth from a labelled data csv and query strings from responses. Please note that
|
903 |
+
LLMs may generate different formatted answers based on different models or different prompting technique. In such cases, extract_original_prompt may not give
|
904 |
+
satisfactory results. Best case scenario will be write your own string extraction method in such cases.
|
905 |
+
|
906 |
+
|
907 |
+
Methods:
|
908 |
+
extract_original_prompt():
|
909 |
+
extraction_ground_truth():
|
910 |
+
"""
|
911 |
+
|
912 |
+
def extract_original_prompt(self, result):
|
913 |
+
r1 = result.response.strip().split("\n")
|
914 |
+
binary_response = ""
|
915 |
+
explanation_response = ""
|
916 |
+
for r in r1:
|
917 |
+
if binary_response == "" and (r.find("Yes") >= 0 or r.find("No") >= 0):
|
918 |
+
binary_response = r
|
919 |
+
elif r.find("Reasoning:") >= 0:
|
920 |
+
cut = r.find(":")
|
921 |
+
explanation_response += r[cut + 1:].strip()
|
922 |
+
|
923 |
+
return binary_response, explanation_response
|
924 |
+
|
925 |
+
def extraction_ground_truth(self, paper_name, labelled_data):
|
926 |
+
id = int(paper_name[paper_name.find("_") + 1:paper_name.find(".pdf")])
|
927 |
+
id_row = labelled_data[labelled_data["id"] == id]
|
928 |
+
ground_truth = id_row.iloc[:, 2:11].values.tolist()[0]
|
929 |
+
binary_ground_truth = []
|
930 |
+
explanation_ground_truth = []
|
931 |
+
for g in ground_truth:
|
932 |
+
if len(g) > 0:
|
933 |
+
binary_ground_truth.append("Yes")
|
934 |
+
explanation_ground_truth.append(g)
|
935 |
+
else:
|
936 |
+
binary_ground_truth.append("No")
|
937 |
+
explanation_ground_truth.append("The article does not provide any relevant information.")
|
938 |
+
return binary_ground_truth, explanation_ground_truth
|
939 |
+
|
940 |
+
|
941 |
+
class EvaluationMetrics():
|
942 |
+
"""
|
943 |
+
|
944 |
+
This class encapsulates the evaluation methods that have been used in the project.
|
945 |
+
|
946 |
+
Attributes:
|
947 |
+
explanation_response = a list of detailed response from the LLM model corresponding to each query
|
948 |
+
explanation_ground_truth = the list of ground truth corresponding to each query
|
949 |
+
|
950 |
+
Methods:
|
951 |
+
metric_cosine_similairty(): Sets up the query engine with all necessary components.
|
952 |
+
metric_rouge(): Executes the predefined queries and prints the results.
|
953 |
+
metric_binary_accuracy():
|
954 |
+
"""
|
955 |
+
|
956 |
+
def __init__(self, explanation_response, explanation_ground_truth, embedding_model):
|
957 |
+
self.explanation_response = explanation_response
|
958 |
+
self.explanation_ground_truth = explanation_ground_truth
|
959 |
+
self.embedding_model = embedding_model
|
960 |
+
|
961 |
+
def metric_cosine_similarity(self):
|
962 |
+
ground_truth_embedding = self.embedding_model.encode(self.explanation_ground_truth)
|
963 |
+
explanation_response_embedding = self.embedding_model.encode(self.explanation_response)
|
964 |
+
return np.diag(cosine_similarity(ground_truth_embedding, explanation_response_embedding))
|
965 |
+
|
966 |
+
def metric_rouge(self):
|
967 |
+
rouge = evaluate.load("rouge")
|
968 |
+
results = rouge.compute(predictions=self.explanation_response, references=self.explanation_ground_truth)
|
969 |
+
return results
|
970 |
+
|
971 |
+
def binary_accuracy(self, binary_response, binary_ground_truth):
|
972 |
+
count = 0
|
973 |
+
if len(binary_response) != len(binary_ground_truth):
|
974 |
+
return "Arrays which are to be compared has different lengths."
|
975 |
+
else:
|
976 |
+
for i in range(len(binary_response)):
|
977 |
+
if binary_response[i] == binary_ground_truth[i]:
|
978 |
+
count += 1
|
979 |
+
return np.round(count / len(binary_response), 2)
|
librarymed/local/__init__.py
ADDED
File without changes
|
librarymed/local/app_local.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import argparse
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
|
6 |
+
import openai
|
7 |
+
from flask import Flask, flash, request, render_template, redirect
|
8 |
+
from llama_index import Document
|
9 |
+
from llama_index.embeddings import OpenAIEmbedding, HuggingFaceEmbedding
|
10 |
+
from llama_index.llms import OpenAI
|
11 |
+
|
12 |
+
from librarymed.local.RAG_utils import PDFProcessor_Unstructured, PDFQueryEngine, MixtralLLM, KeywordSearch, base_utils, \
|
13 |
+
ConfigManager
|
14 |
+
|
15 |
+
app = Flask(__name__)
|
16 |
+
app.config['SECRET_KEY'] = 'librarymed super secret key'
|
17 |
+
|
18 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
19 |
+
config_manager = ConfigManager()
|
20 |
+
config_manager.load_config("api", "Config/api_config.json")
|
21 |
+
config_manager.load_config("model", "Config/model_config.json")
|
22 |
+
app.config['user_config'] = config_manager
|
23 |
+
|
24 |
+
|
25 |
+
def allowed_file(filename, allowed_extensions):
|
26 |
+
""" Helper function to check if the file extension is allowed """
|
27 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in allowed_extensions
|
28 |
+
|
29 |
+
|
30 |
+
@app.route('/', methods=['GET'])
|
31 |
+
def __get__():
|
32 |
+
score = 0
|
33 |
+
criteria_met = 0
|
34 |
+
title = ""
|
35 |
+
author_info = ""
|
36 |
+
reasoning = ""
|
37 |
+
|
38 |
+
return render_template('index.html',
|
39 |
+
title=title,
|
40 |
+
author=author_info,
|
41 |
+
score=score,
|
42 |
+
criteria_met=criteria_met,
|
43 |
+
reasoning=reasoning,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
@app.route('/upload', methods=['POST'])
|
48 |
+
def upload():
|
49 |
+
config = app.config['user_config']
|
50 |
+
openai.api_key = config.get_config_value("api", "OPENAI_API_KEY")
|
51 |
+
hf_token = config.get_config_value("api", "HF_TOKEN")
|
52 |
+
embed = config.get_config_value("model", "embeddings")
|
53 |
+
embed_model_name = config.get_config_value("model", "embeddings_model")
|
54 |
+
llm_model = config.get_config_value("model", "llm_model")
|
55 |
+
model_temperature = config.get_config_value("model", "model_temp")
|
56 |
+
output_token_size = config.get_config_value("model", "max_tokens")
|
57 |
+
model_context_window = config.get_config_value("model", "context_window")
|
58 |
+
gpt_prompt_path = config_manager.get_config_value("model", "GPT_PROMPT_PATH")
|
59 |
+
mistral_prompt_path = config_manager.get_config_value("model", "MISTRAL_PROMPT_PATH")
|
60 |
+
info_prompt_path = config.get_config_value("model", "INFO_PROMPT_PATH")
|
61 |
+
peer_review_journals_path = config.get_config_value("model", "peer_review_journals_path")
|
62 |
+
eq_network_journals_path = config.get_config_value("model", "eq_network_journals_path")
|
63 |
+
queries = config.get_config_value("model", "queries")
|
64 |
+
num_criteria = len(config.get_config_value("model", "criteria"))
|
65 |
+
author_query = config.get_config_value("model", "author_query")
|
66 |
+
journal_query = config.get_config_value("model", "journal_query")
|
67 |
+
|
68 |
+
# Check if the post request has the file part
|
69 |
+
if 'file' not in request.files:
|
70 |
+
flash('No file part')
|
71 |
+
return redirect(request.url)
|
72 |
+
file = request.files['file']
|
73 |
+
# If user does not select file, browser also submits an empty part without filename
|
74 |
+
if file.filename == '':
|
75 |
+
flash('No selected file')
|
76 |
+
return redirect(request.url)
|
77 |
+
if file and allowed_file(file.filename, config.get_config_value("model", "allowed_extensions")):
|
78 |
+
try:
|
79 |
+
# Process the PDF file
|
80 |
+
pdf_processor = PDFProcessor_Unstructured(config.get_config_value("model", "pdf_processing"))
|
81 |
+
merged_chunks, tables, title = pdf_processor.process_pdf_file(file)
|
82 |
+
documents = [Document(text=t) for t in merged_chunks]
|
83 |
+
|
84 |
+
utils = base_utils()
|
85 |
+
|
86 |
+
# LLM Model choice
|
87 |
+
if 'gpt' in llm_model.lower(): # TODO tested "gpt-4" and "gpt-3.5-turbo":
|
88 |
+
llm = OpenAI(model=llm_model, temperature=model_temperature, max_tokens=output_token_size)
|
89 |
+
prompt_template = utils.read_from_file(gpt_prompt_path)
|
90 |
+
|
91 |
+
elif llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
92 |
+
if any(param is None for param in
|
93 |
+
[model_context_window, output_token_size, model_temperature, hf_token]):
|
94 |
+
raise ValueError("All parameters are required for Mistral LLM.")
|
95 |
+
|
96 |
+
llm = MixtralLLM(context_window=model_context_window, num_output=output_token_size,
|
97 |
+
temperature=model_temperature, model_name=llm_model, api_key=hf_token)
|
98 |
+
prompt_template = utils.read_from_file(mistral_prompt_path)
|
99 |
+
|
100 |
+
else:
|
101 |
+
raise NotImplementedError(f"Error initializing language model '{llm_model}'")
|
102 |
+
|
103 |
+
# Embedding model choice for RAG
|
104 |
+
if embed == "openai":
|
105 |
+
embed_model = OpenAIEmbedding()
|
106 |
+
|
107 |
+
elif embed == "huggingface":
|
108 |
+
if embed_model_name is None:
|
109 |
+
# Set to default model if name not provided
|
110 |
+
embed_model_name = "BAAI/bge-small-en-v1.5"
|
111 |
+
embed_model = HuggingFaceEmbedding(embed_model_name)
|
112 |
+
else:
|
113 |
+
# Use the specified model name
|
114 |
+
embed_model = HuggingFaceEmbedding(embed_model_name)
|
115 |
+
|
116 |
+
else:
|
117 |
+
raise NotImplementedError(f"Error initializing embedding model: {embed}")
|
118 |
+
|
119 |
+
# Prompts and Queries
|
120 |
+
info_prompt = utils.read_from_file(info_prompt_path)
|
121 |
+
|
122 |
+
peer_review_journals = utils.read_from_file(peer_review_journals_path)
|
123 |
+
eq_network_journals = utils.read_from_file(eq_network_journals_path)
|
124 |
+
|
125 |
+
peer_review_journals_list = peer_review_journals.split('\n')
|
126 |
+
eq_network_journals_list = eq_network_journals.split('\n')
|
127 |
+
|
128 |
+
modified_journal_query = "Is the given research paper published in any of the following journals: " + ", ".join(
|
129 |
+
peer_review_journals_list) + "?"
|
130 |
+
|
131 |
+
pdf_info_query = PDFQueryEngine(documents, llm, embed_model, (info_prompt))
|
132 |
+
info_query_engine = pdf_info_query.setup_query_engine()
|
133 |
+
journal_result = info_query_engine.query(modified_journal_query).response
|
134 |
+
author_info = info_query_engine.query(author_query).response
|
135 |
+
|
136 |
+
pdf_criteria_query = PDFQueryEngine(documents, llm, embed_model, (prompt_template))
|
137 |
+
|
138 |
+
# Check for prior registration
|
139 |
+
nlp_methods = KeywordSearch(merged_chunks)
|
140 |
+
eq_journal_result = nlp_methods.find_journal_name(journal_result, eq_network_journals_list)
|
141 |
+
peer_journal_result = nlp_methods.find_journal_name(journal_result, peer_review_journals_list)
|
142 |
+
registration_result = nlp_methods.check_registration()
|
143 |
+
|
144 |
+
# Evaluate with OpenAI model
|
145 |
+
total_score, criteria_met, score_percentage, reasoning = pdf_criteria_query.evaluate_with_llm(
|
146 |
+
registration_result, peer_journal_result, eq_journal_result, queries)
|
147 |
+
score = f"{round((total_score / num_criteria) * 100)}/100"
|
148 |
+
|
149 |
+
except Exception as e:
|
150 |
+
flash('An error occurred while processing the file. Error: ' + str(e))
|
151 |
+
return redirect(request.url)
|
152 |
+
|
153 |
+
# e.g. score: 56 / 100 - criteria_met: 5 - author_info: Direct
|
154 |
+
return render_template('index.html',
|
155 |
+
title=title,
|
156 |
+
author=author_info,
|
157 |
+
score=score,
|
158 |
+
criteria_met=criteria_met,
|
159 |
+
reasoning=reasoning,
|
160 |
+
)
|
librarymed/local/templates/index.html
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!doctype html>
|
2 |
+
<html>
|
3 |
+
<head>
|
4 |
+
<title>Upload and Results</title>
|
5 |
+
<!-- Include Google Fonts -->
|
6 |
+
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap" rel="stylesheet">
|
7 |
+
<style>
|
8 |
+
body {
|
9 |
+
font-family: 'Roboto', sans-serif;
|
10 |
+
background-color: #f4f4f4;
|
11 |
+
overflow: auto;
|
12 |
+
width: 100%;
|
13 |
+
margin: 0;
|
14 |
+
padding: 0;
|
15 |
+
display: flex;
|
16 |
+
flex-direction: column; /* Stack flex items vertically */
|
17 |
+
align-items: center; /* Center items horizontally */
|
18 |
+
justify-content: flex-start; /* Align items to the start of the container vertically */
|
19 |
+
min-height: 100vh; /* Use min-height instead of height to accommodate content taller than the viewport */
|
20 |
+
}
|
21 |
+
|
22 |
+
table {
|
23 |
+
width: 100%; /* Adjust the width as needed */
|
24 |
+
border-collapse: collapse; /* Collapse borders for a tighter look */
|
25 |
+
}
|
26 |
+
|
27 |
+
th, td {
|
28 |
+
border: 1px solid #ddd; /* Adjust the border size as needed */
|
29 |
+
text-align: left;
|
30 |
+
padding: 5px; /* Reduce padding to decrease cell spacing */
|
31 |
+
height: 30px; /* Optionally reduce the height of the cells */
|
32 |
+
}
|
33 |
+
.parent-element {
|
34 |
+
overflow: visible; /* Ensures content is not cut off */
|
35 |
+
}
|
36 |
+
.container {
|
37 |
+
background-color: white;
|
38 |
+
overflow: auto;
|
39 |
+
border-radius: 8px;
|
40 |
+
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
|
41 |
+
padding: 40px;
|
42 |
+
width: 100%; /* Set width to 100% of the viewport */
|
43 |
+
max-width: 700px;
|
44 |
+
}
|
45 |
+
.score-bar-container {
|
46 |
+
position: relative;
|
47 |
+
margin-top: 20px; /* Space above the score bar */
|
48 |
+
max-width: 100%; /* Ensures the container does not exceed the parent width */
|
49 |
+
}
|
50 |
+
.score-very-good-fill {
|
51 |
+
background-color: #4CAF50; /* Green */
|
52 |
+
}
|
53 |
+
|
54 |
+
.score-good-fill {
|
55 |
+
background-color: #FFEB3B; /* Yellow */
|
56 |
+
}
|
57 |
+
|
58 |
+
.score-ok-fill {
|
59 |
+
background-color: #FF9800; /* Orange */
|
60 |
+
}
|
61 |
+
|
62 |
+
.score-bad-fill {
|
63 |
+
background-color: #f44336; /* Red */
|
64 |
+
}
|
65 |
+
|
66 |
+
.score-very-bad-fill {
|
67 |
+
background-color: #9E9E9E; /* Grey */
|
68 |
+
}
|
69 |
+
.score-very-good-text {
|
70 |
+
color: #4CAF50; /* Green */
|
71 |
+
}
|
72 |
+
|
73 |
+
.score-good-text {
|
74 |
+
color: #FFEB3B; /* Yellow */
|
75 |
+
}
|
76 |
+
|
77 |
+
.score-ok-text {
|
78 |
+
color: #FF9800; /* Orange */
|
79 |
+
}
|
80 |
+
|
81 |
+
.score-bad-text {
|
82 |
+
color: #f44336; /* Red */
|
83 |
+
}
|
84 |
+
|
85 |
+
.score-very-bad-text {
|
86 |
+
color: #9E9E9E; /* Grey */
|
87 |
+
}
|
88 |
+
|
89 |
+
.score-bar {
|
90 |
+
background-color: #ddd;
|
91 |
+
border-radius: 10px;
|
92 |
+
height: 20px;
|
93 |
+
width: 100%; /* Adjusted to take the full width */
|
94 |
+
display: inline-block; /* Allows the score text to sit next to the score bar */
|
95 |
+
vertical-align: middle; /* Aligns score bar and text vertically */
|
96 |
+
}
|
97 |
+
|
98 |
+
.score-fill {
|
99 |
+
height: 100%;
|
100 |
+
border-radius: 10px 0 0 10px; /* Rounded corners on the left side */
|
101 |
+
display: inline-block;
|
102 |
+
vertical-align: middle;
|
103 |
+
}
|
104 |
+
|
105 |
+
.score-text {
|
106 |
+
display: inline-block;
|
107 |
+
vertical-align: middle; /* Align with the score bar */
|
108 |
+
font-weight: bold; /* Make the score text bold */
|
109 |
+
margin-left: 10px; /* Space between the score bar and score text */
|
110 |
+
}
|
111 |
+
|
112 |
+
.score-title {
|
113 |
+
font-size: 20px;
|
114 |
+
font-weight: bold;
|
115 |
+
margin: 20px 0;
|
116 |
+
color: #333;
|
117 |
+
}
|
118 |
+
.major-issues {
|
119 |
+
text-align: left; /* Aligns the major issues to the left */
|
120 |
+
padding-left: 20px; /* Padding for the bullet list */
|
121 |
+
list-style: inside disc; /* Bullet style */
|
122 |
+
}
|
123 |
+
form {
|
124 |
+
margin-bottom: 20px;
|
125 |
+
}
|
126 |
+
input[type="file"] {
|
127 |
+
margin-bottom: 10px;
|
128 |
+
}
|
129 |
+
input[type="submit"] {
|
130 |
+
cursor: pointer;
|
131 |
+
margin-top: 10px;
|
132 |
+
padding: 10px 20px;
|
133 |
+
border: none;
|
134 |
+
background-color: #4CAF50;
|
135 |
+
color: white;
|
136 |
+
border-radius: 5px;
|
137 |
+
font-size: 16px;
|
138 |
+
font-weight: bold;
|
139 |
+
}
|
140 |
+
input[type="submit"]:hover {
|
141 |
+
background-color: #45a049;
|
142 |
+
}
|
143 |
+
</style>
|
144 |
+
</head>
|
145 |
+
<body>
|
146 |
+
<div class="container">
|
147 |
+
<h2>Upload PDF and View Results</h2>
|
148 |
+
|
149 |
+
<!-- Upload Form -->
|
150 |
+
<form action="/upload" method="post" enctype="multipart/form-data">
|
151 |
+
<input type="file" name="file" required>
|
152 |
+
<input type="submit" value="Upload">
|
153 |
+
</form>
|
154 |
+
|
155 |
+
<!-- Results Section -->
|
156 |
+
{% if total_score is not none %}
|
157 |
+
<!-- GPT-4 Score Bar -->
|
158 |
+
<div class="score-title">Score:</div>
|
159 |
+
<div class="score-bar-container">
|
160 |
+
<div class="score-bar">
|
161 |
+
<div class="score-fill {{
|
162 |
+
'score-very-good-fill' if criteria_met == 9 else
|
163 |
+
'score-good-fill' if criteria_met >= 7 else
|
164 |
+
'score-ok-fill' if criteria_met >= 5 else
|
165 |
+
'score-bad-fill' if criteria_met >= 3 else
|
166 |
+
'score-very-bad-fill' }}" style="width: {{ score_percentage_gpt4 }}%;"></div>
|
167 |
+
</div>
|
168 |
+
<div class="score-text">{{ score }}</div>
|
169 |
+
</div>
|
170 |
+
|
171 |
+
<h3>Title:</h3>
|
172 |
+
<p> {{title}}</p>
|
173 |
+
|
174 |
+
<h3>Author Information:</h3>
|
175 |
+
<p> {{author}}</p>
|
176 |
+
|
177 |
+
<h3>Reasoning:</h3>
|
178 |
+
<ul class="major-issues">
|
179 |
+
{% for issue in reasoning %}
|
180 |
+
<li>{{ issue }}</li>
|
181 |
+
{% endfor %}
|
182 |
+
</ul>
|
183 |
+
|
184 |
+
{% endif %}
|
185 |
+
</div>
|
186 |
+
</body>
|
187 |
+
</html>
|
librarymed/local/templates/upload_and_results.html
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!doctype html>
|
2 |
+
<html>
|
3 |
+
<head>
|
4 |
+
<title>Upload and Results</title>
|
5 |
+
<!-- Include Google Fonts -->
|
6 |
+
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap" rel="stylesheet">
|
7 |
+
<style>
|
8 |
+
body {
|
9 |
+
font-family: 'Roboto', sans-serif;
|
10 |
+
background-color: #f4f4f4;
|
11 |
+
overflow: auto;
|
12 |
+
width: 100%;
|
13 |
+
margin: 0;
|
14 |
+
padding: 0;
|
15 |
+
display: flex;
|
16 |
+
flex-direction: column; /* Stack flex items vertically */
|
17 |
+
align-items: center; /* Center items horizontally */
|
18 |
+
justify-content: flex-start; /* Align items to the start of the container vertically */
|
19 |
+
min-height: 100vh; /* Use min-height instead of height to accommodate content taller than the viewport */
|
20 |
+
}
|
21 |
+
|
22 |
+
table {
|
23 |
+
width: 100%; /* Adjust the width as needed */
|
24 |
+
border-collapse: collapse; /* Collapse borders for a tighter look */
|
25 |
+
}
|
26 |
+
|
27 |
+
th, td {
|
28 |
+
border: 1px solid #ddd; /* Adjust the border size as needed */
|
29 |
+
text-align: left;
|
30 |
+
padding: 5px; /* Reduce padding to decrease cell spacing */
|
31 |
+
height: 30px; /* Optionally reduce the height of the cells */
|
32 |
+
}
|
33 |
+
.parent-element {
|
34 |
+
overflow: visible; /* Ensures content is not cut off */
|
35 |
+
}
|
36 |
+
.container {
|
37 |
+
background-color: white;
|
38 |
+
overflow: auto;
|
39 |
+
border-radius: 8px;
|
40 |
+
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
|
41 |
+
padding: 40px;
|
42 |
+
width: 100%; /* Set width to 100% of the viewport */
|
43 |
+
max-width: 700px;
|
44 |
+
}
|
45 |
+
.score-bar-container {
|
46 |
+
position: relative;
|
47 |
+
margin-top: 20px; /* Space above the score bar */
|
48 |
+
max-width: 100%; /* Ensures the container does not exceed the parent width */
|
49 |
+
}
|
50 |
+
.score-very-good-fill {
|
51 |
+
background-color: #4CAF50; /* Green */
|
52 |
+
}
|
53 |
+
|
54 |
+
.score-good-fill {
|
55 |
+
background-color: #FFEB3B; /* Yellow */
|
56 |
+
}
|
57 |
+
|
58 |
+
.score-ok-fill {
|
59 |
+
background-color: #FF9800; /* Orange */
|
60 |
+
}
|
61 |
+
|
62 |
+
.score-bad-fill {
|
63 |
+
background-color: #f44336; /* Red */
|
64 |
+
}
|
65 |
+
|
66 |
+
.score-very-bad-fill {
|
67 |
+
background-color: #9E9E9E; /* Grey */
|
68 |
+
}
|
69 |
+
.score-very-good-text {
|
70 |
+
color: #4CAF50; /* Green */
|
71 |
+
}
|
72 |
+
|
73 |
+
.score-good-text {
|
74 |
+
color: #FFEB3B; /* Yellow */
|
75 |
+
}
|
76 |
+
|
77 |
+
.score-ok-text {
|
78 |
+
color: #FF9800; /* Orange */
|
79 |
+
}
|
80 |
+
|
81 |
+
.score-bad-text {
|
82 |
+
color: #f44336; /* Red */
|
83 |
+
}
|
84 |
+
|
85 |
+
.score-very-bad-text {
|
86 |
+
color: #9E9E9E; /* Grey */
|
87 |
+
}
|
88 |
+
|
89 |
+
.score-bar {
|
90 |
+
background-color: #ddd;
|
91 |
+
border-radius: 10px;
|
92 |
+
height: 20px;
|
93 |
+
width: 100%; /* Adjusted to take the full width */
|
94 |
+
display: inline-block; /* Allows the score text to sit next to the score bar */
|
95 |
+
vertical-align: middle; /* Aligns score bar and text vertically */
|
96 |
+
}
|
97 |
+
|
98 |
+
.score-fill {
|
99 |
+
height: 100%;
|
100 |
+
border-radius: 10px 0 0 10px; /* Rounded corners on the left side */
|
101 |
+
display: inline-block;
|
102 |
+
vertical-align: middle;
|
103 |
+
}
|
104 |
+
|
105 |
+
.score-text {
|
106 |
+
display: inline-block;
|
107 |
+
vertical-align: middle; /* Align with the score bar */
|
108 |
+
font-weight: bold; /* Make the score text bold */
|
109 |
+
margin-left: 10px; /* Space between the score bar and score text */
|
110 |
+
}
|
111 |
+
|
112 |
+
.score-title {
|
113 |
+
font-size: 20px;
|
114 |
+
font-weight: bold;
|
115 |
+
margin: 20px 0;
|
116 |
+
color: #333;
|
117 |
+
}
|
118 |
+
.major-issues {
|
119 |
+
text-align: left; /* Aligns the major issues to the left */
|
120 |
+
padding-left: 20px; /* Padding for the bullet list */
|
121 |
+
list-style: inside disc; /* Bullet style */
|
122 |
+
}
|
123 |
+
form {
|
124 |
+
margin-bottom: 20px;
|
125 |
+
}
|
126 |
+
input[type="file"] {
|
127 |
+
margin-bottom: 10px;
|
128 |
+
}
|
129 |
+
input[type="submit"] {
|
130 |
+
cursor: pointer;
|
131 |
+
margin-top: 10px;
|
132 |
+
padding: 10px 20px;
|
133 |
+
border: none;
|
134 |
+
background-color: #4CAF50;
|
135 |
+
color: white;
|
136 |
+
border-radius: 5px;
|
137 |
+
font-size: 16px;
|
138 |
+
font-weight: bold;
|
139 |
+
}
|
140 |
+
input[type="submit"]:hover {
|
141 |
+
background-color: #45a049;
|
142 |
+
}
|
143 |
+
</style>
|
144 |
+
</head>
|
145 |
+
<body>
|
146 |
+
<div class="container">
|
147 |
+
<h2>Upload PDF and View Results</h2>
|
148 |
+
|
149 |
+
<!-- Upload Form -->
|
150 |
+
<form action="/upload" method="post" enctype="multipart/form-data">
|
151 |
+
<input type="file" name="file" required>
|
152 |
+
<input type="submit" value="Upload">
|
153 |
+
</form>
|
154 |
+
|
155 |
+
<!-- Results Section -->
|
156 |
+
{% if gpt4_score is not none or mistral_score is not none %}
|
157 |
+
<!-- GPT-4 Score Bar -->
|
158 |
+
<div class="score-title">Score for GPT-4:</div>
|
159 |
+
<div class="score-bar-container">
|
160 |
+
<div class="score-bar">
|
161 |
+
<div class="score-fill {{
|
162 |
+
'score-very-good-fill' if criteria_met_gpt4 == 9 else
|
163 |
+
'score-good-fill' if criteria_met_gpt4 >= 7 else
|
164 |
+
'score-ok-fill' if criteria_met_gpt4 >= 5 else
|
165 |
+
'score-bad-fill' if criteria_met_gpt4 >= 3 else
|
166 |
+
'score-very-bad-fill' }}" style="width: {{ score_percentage_gpt4 }}%;"></div>
|
167 |
+
</div>
|
168 |
+
<div class="score-text">{{ total_score_gpt4 }}/9</div>
|
169 |
+
</div>
|
170 |
+
|
171 |
+
<!-- Mistral Score Bar -->
|
172 |
+
<div class="score-title">Score for Mistral:</div>
|
173 |
+
<div class="score-bar-container">
|
174 |
+
<div class="score-bar">
|
175 |
+
<div class="score-fill {{
|
176 |
+
'score-very-good-fill' if criteria_met_mistral == 9 else
|
177 |
+
'score-good-fill' if criteria_met_mistral >= 7 else
|
178 |
+
'score-ok-fill' if criteria_met_mistral >= 5 else
|
179 |
+
'score-bad-fill' if criteria_met_mistral >= 3 else
|
180 |
+
'score-very-bad-fill' }}" style="width: {{ score_percentage_mistral }}%;"></div>
|
181 |
+
</div>
|
182 |
+
<div class="score-text">{{ total_score_mistral }}/9</div>
|
183 |
+
</div>
|
184 |
+
|
185 |
+
<!-- Reasoning for GPT-4 -->
|
186 |
+
<h3>Reasoning from GPT-4:</h3>
|
187 |
+
<ul class="major-issues">
|
188 |
+
{% for issue in reasoning_gpt4 %}
|
189 |
+
<li>{{ issue }}</li>
|
190 |
+
{% endfor %}
|
191 |
+
</ul>
|
192 |
+
|
193 |
+
<!-- Reasoning for Mistral -->
|
194 |
+
<h3>Reasoning from Mistral:</h3>
|
195 |
+
<ul class="major-issues">
|
196 |
+
{% for issue in reasoning_mistral %}
|
197 |
+
<li>{{ issue }}</li>
|
198 |
+
{% endfor %}
|
199 |
+
</ul>
|
200 |
+
<!-- Insert the Criteria Table Section Here -->
|
201 |
+
{% if combined_criteria_table %}
|
202 |
+
<h3>Criteria Evaluation</h3>
|
203 |
+
<table>
|
204 |
+
<thead>
|
205 |
+
<tr>
|
206 |
+
<th>Criteria Number</th>
|
207 |
+
<th>GPT-4 output</th>
|
208 |
+
<th>Mistral output</th>
|
209 |
+
<th>Ground truth</th>
|
210 |
+
</tr>
|
211 |
+
</thead>
|
212 |
+
<tbody>
|
213 |
+
{% for row in combined_criteria_table %}
|
214 |
+
<tr>
|
215 |
+
<td>{{ row['Criteria Number'] }}</td>
|
216 |
+
<td>{{ 'Yes' if row['Score GPT-4'] == 1 else 'No' }}</td>
|
217 |
+
<td>{{ 'Yes' if row['Score Mistral'] == 1 else 'No' }}</td>
|
218 |
+
<td>{{ 'Yes' if row['ground truth'] else 'No' }}</td>
|
219 |
+
</tr>
|
220 |
+
{% endfor %}
|
221 |
+
</tbody>
|
222 |
+
</table>
|
223 |
+
{% endif %}
|
224 |
+
{% endif %}
|
225 |
+
</div>
|
226 |
+
</body>
|
227 |
+
</html>
|
librarymed/main.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
if __name__ == '__main__':
|
9 |
+
args_parse = argparse.ArgumentParser(description="LibraryMed")
|
10 |
+
args_parse.add_argument("--local", help="Run inferface v0.1.0 by the fellows", action="store_true")
|
11 |
+
args = args_parse.parse_args()
|
12 |
+
port = os.getenv("PORT") or 80
|
13 |
+
|
14 |
+
if args.local:
|
15 |
+
from .local.app_local import app
|
16 |
+
logging.info("Run LibraryMed interface v0.1.0 developed by the fellows")
|
17 |
+
app.run(debug=True, host="0.0.0.0", port=port)
|
18 |
+
|
19 |
+
else:
|
20 |
+
from kromin.app_librarymed import app
|
21 |
+
logging.info("Run LibraryMed interface v0.2.0 developed by Kromin")
|
22 |
+
app.run(debug=True, host="0.0.0.0", port=port)
|
requirements.txt
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
beautifulsoup4
|
2 |
+
chromadb
|
3 |
+
cohere
|
4 |
+
faiss-cpu
|
5 |
+
Flask
|
6 |
+
langchain
|
7 |
+
langchainhub
|
8 |
+
gradio
|
9 |
+
llama-index == 0.9.35
|
10 |
+
llmsherpa
|
11 |
+
lxml
|
12 |
+
unstructured
|
13 |
+
bs4
|
14 |
+
evaluate
|
15 |
+
faiss-cpu
|
16 |
+
numpy
|
17 |
+
openai
|
18 |
+
Pillow == 10.0.1
|
19 |
+
PyPDF2
|
20 |
+
pydantic
|
21 |
+
rank-bm25
|
22 |
+
requests
|
23 |
+
rapidocr-onnxruntime
|
24 |
+
rouge-score
|
25 |
+
scikit-learn
|
26 |
+
sentence-transformers
|
27 |
+
tiktoken
|
28 |
+
transformers
|
29 |
+
tesseract
|
30 |
+
pdf2image
|
31 |
+
pdfminer.six
|
32 |
+
opencv-python
|
33 |
+
pikepdf
|
34 |
+
pypdf
|
35 |
+
unstructured-inference
|
36 |
+
pytesseract
|
37 |
+
pillow-heif
|
38 |
+
unstructured-pytesseract
|
39 |
+
fpdf
|
40 |
+
qdrant_client
|
41 |
+
python-dotenv
|