Spaces:
Runtime error
Runtime error
from torchvision import transforms | |
from timm.data.transforms import RandomResizedCropAndInterpolation | |
from timm.data.constants import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD | |
from transformers import AutoConfig | |
from PIL import Image | |
from io import BytesIO | |
import torch.distributed as dist | |
import numpy as np | |
import pickle | |
import base64 | |
import cv2 | |
import os | |
import torch | |
from transformers import AutoConfig, StoppingCriteria | |
try: | |
from timm.data.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD | |
except ImportError: | |
OPENAI_CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073) | |
OPENAI_CLIP_STD = (0.26862954, 0.26130258, 0.27577711) | |
def auto_upgrade(config): | |
cfg = AutoConfig.from_pretrained(config) | |
if 'llava' in config and cfg.model_type != 'llava': | |
print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.") | |
print("You must upgrade the checkpoint to the new code base (this can be done automatically).") | |
confirm = input( | |
"Please confirm that you want to upgrade the checkpoint. [Y/N]") | |
if confirm.lower() in ["y", "yes"]: | |
print("Upgrading checkpoint...") | |
assert len(cfg.architectures) == 1 | |
setattr(cfg.__class__, "model_type", "llava") | |
cfg.architectures[0] = 'LlavaLlamaForCausalLM' | |
cfg.save_pretrained(config) | |
print("Checkpoint upgraded.") | |
else: | |
print("Checkpoint upgrade aborted.") | |
exit(1) | |
class KeywordsStoppingCriteria(StoppingCriteria): | |
def __init__(self, keywords, tokenizer, input_ids): | |
self.keywords = keywords | |
self.tokenizer = tokenizer | |
self.start_len = None | |
self.input_ids = input_ids | |
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
if self.start_len is None: | |
self.start_len = self.input_ids.shape[1] | |
else: | |
outputs = self.tokenizer.batch_decode( | |
output_ids[:, self.start_len:], skip_special_tokens=True)[0] | |
for keyword in self.keywords: | |
if keyword in outputs: | |
return True | |
return False | |
def auto_upgrade(config): | |
cfg = AutoConfig.from_pretrained(config) | |
if 'llava' in config and cfg.model_type != 'llava': | |
print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.") | |
print("You must upgrade the checkpoint to the new code base (this can be done automatically).") | |
confirm = input( | |
"Please confirm that you want to upgrade the checkpoint. [Y/N]") | |
if confirm.lower() in ["y", "yes"]: | |
print("Upgrading checkpoint...") | |
assert len(cfg.architectures) == 1 | |
setattr(cfg.__class__, "model_type", "llava") | |
cfg.architectures[0] = 'LlavaLlamaForCausalLM' | |
cfg.save_pretrained(config) | |
print("Checkpoint upgraded.") | |
else: | |
print("Checkpoint upgrade aborted.") | |
exit(1) | |
# aug functions | |
def identity_func(img): | |
return img | |
def autocontrast_func(img, cutoff=0): | |
''' | |
same output as PIL.ImageOps.autocontrast | |
''' | |
n_bins = 256 | |
def tune_channel(ch): | |
n = ch.size | |
cut = cutoff * n // 100 | |
if cut == 0: | |
high, low = ch.max(), ch.min() | |
else: | |
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins]) | |
low = np.argwhere(np.cumsum(hist) > cut) | |
low = 0 if low.shape[0] == 0 else low[0] | |
high = np.argwhere(np.cumsum(hist[::-1]) > cut) | |
high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0] | |
if high <= low: | |
table = np.arange(n_bins) | |
else: | |
scale = (n_bins - 1) / (high - low) | |
table = np.arange(n_bins) * scale - low * scale | |
table[table < 0] = 0 | |
table[table > n_bins - 1] = n_bins - 1 | |
table = table.clip(0, 255).astype(np.uint8) | |
return table[ch] | |
channels = [tune_channel(ch) for ch in cv2.split(img)] | |
out = cv2.merge(channels) | |
return out | |
def equalize_func(img): | |
''' | |
same output as PIL.ImageOps.equalize | |
PIL's implementation is different from cv2.equalize | |
''' | |
n_bins = 256 | |
def tune_channel(ch): | |
hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins]) | |
non_zero_hist = hist[hist != 0].reshape(-1) | |
step = np.sum(non_zero_hist[:-1]) // (n_bins - 1) | |
if step == 0: | |
return ch | |
n = np.empty_like(hist) | |
n[0] = step // 2 | |
n[1:] = hist[:-1] | |
table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8) | |
return table[ch] | |
channels = [tune_channel(ch) for ch in cv2.split(img)] | |
out = cv2.merge(channels) | |
return out | |
def rotate_func(img, degree, fill=(0, 0, 0)): | |
''' | |
like PIL, rotate by degree, not radians | |
''' | |
H, W = img.shape[0], img.shape[1] | |
center = W / 2, H / 2 | |
M = cv2.getRotationMatrix2D(center, degree, 1) | |
out = cv2.warpAffine(img, M, (W, H), borderValue=fill) | |
return out | |
def solarize_func(img, thresh=128): | |
''' | |
same output as PIL.ImageOps.posterize | |
''' | |
table = np.array([el if el < thresh else 255 - el for el in range(256)]) | |
table = table.clip(0, 255).astype(np.uint8) | |
out = table[img] | |
return out | |
def color_func(img, factor): | |
''' | |
same output as PIL.ImageEnhance.Color | |
''' | |
# implementation according to PIL definition, quite slow | |
# degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis] | |
# out = blend(degenerate, img, factor) | |
# M = ( | |
# np.eye(3) * factor | |
# + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor) | |
# )[np.newaxis, np.newaxis, :] | |
M = ( | |
np.float32([ | |
[0.886, -0.114, -0.114], | |
[-0.587, 0.413, -0.587], | |
[-0.299, -0.299, 0.701]]) * factor | |
+ np.float32([[0.114], [0.587], [0.299]]) | |
) | |
out = np.matmul(img, M).clip(0, 255).astype(np.uint8) | |
return out | |
def contrast_func(img, factor): | |
""" | |
same output as PIL.ImageEnhance.Contrast | |
""" | |
mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299])) | |
table = np.array([( | |
el - mean) * factor + mean | |
for el in range(256) | |
]).clip(0, 255).astype(np.uint8) | |
out = table[img] | |
return out | |
def brightness_func(img, factor): | |
''' | |
same output as PIL.ImageEnhance.Contrast | |
''' | |
table = (np.arange(256, dtype=np.float32) * | |
factor).clip(0, 255).astype(np.uint8) | |
out = table[img] | |
return out | |
def sharpness_func(img, factor): | |
''' | |
The differences the this result and PIL are all on the 4 boundaries, the center | |
areas are same | |
''' | |
kernel = np.ones((3, 3), dtype=np.float32) | |
kernel[1][1] = 5 | |
kernel /= 13 | |
degenerate = cv2.filter2D(img, -1, kernel) | |
if factor == 0.0: | |
out = degenerate | |
elif factor == 1.0: | |
out = img | |
else: | |
out = img.astype(np.float32) | |
degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :] | |
out[1:-1, 1:-1, :] = degenerate + factor * \ | |
(out[1:-1, 1:-1, :] - degenerate) | |
out = out.astype(np.uint8) | |
return out | |
def shear_x_func(img, factor, fill=(0, 0, 0)): | |
H, W = img.shape[0], img.shape[1] | |
M = np.float32([[1, factor, 0], [0, 1, 0]]) | |
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, | |
flags=cv2.INTER_LINEAR).astype(np.uint8) | |
return out | |
def translate_x_func(img, offset, fill=(0, 0, 0)): | |
''' | |
same output as PIL.Image.transform | |
''' | |
H, W = img.shape[0], img.shape[1] | |
M = np.float32([[1, 0, -offset], [0, 1, 0]]) | |
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, | |
flags=cv2.INTER_LINEAR).astype(np.uint8) | |
return out | |
def translate_y_func(img, offset, fill=(0, 0, 0)): | |
''' | |
same output as PIL.Image.transform | |
''' | |
H, W = img.shape[0], img.shape[1] | |
M = np.float32([[1, 0, 0], [0, 1, -offset]]) | |
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, | |
flags=cv2.INTER_LINEAR).astype(np.uint8) | |
return out | |
def posterize_func(img, bits): | |
''' | |
same output as PIL.ImageOps.posterize | |
''' | |
out = np.bitwise_and(img, np.uint8(255 << (8 - bits))) | |
return out | |
def shear_y_func(img, factor, fill=(0, 0, 0)): | |
H, W = img.shape[0], img.shape[1] | |
M = np.float32([[1, 0, 0], [factor, 1, 0]]) | |
out = cv2.warpAffine(img, M, (W, H), borderValue=fill, | |
flags=cv2.INTER_LINEAR).astype(np.uint8) | |
return out | |
def cutout_func(img, pad_size, replace=(0, 0, 0)): | |
replace = np.array(replace, dtype=np.uint8) | |
H, W = img.shape[0], img.shape[1] | |
rh, rw = np.random.random(2) | |
pad_size = pad_size // 2 | |
ch, cw = int(rh * H), int(rw * W) | |
x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H) | |
y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W) | |
out = img.copy() | |
out[x1:x2, y1:y2, :] = replace | |
return out | |
# level to args | |
def enhance_level_to_args(MAX_LEVEL): | |
def level_to_args(level): | |
return ((level / MAX_LEVEL) * 1.8 + 0.1,) | |
return level_to_args | |
def shear_level_to_args(MAX_LEVEL, replace_value): | |
def level_to_args(level): | |
level = (level / MAX_LEVEL) * 0.3 | |
if np.random.random() > 0.5: | |
level = -level | |
return (level, replace_value) | |
return level_to_args | |
def translate_level_to_args(translate_const, MAX_LEVEL, replace_value): | |
def level_to_args(level): | |
level = (level / MAX_LEVEL) * float(translate_const) | |
if np.random.random() > 0.5: | |
level = -level | |
return (level, replace_value) | |
return level_to_args | |
def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value): | |
def level_to_args(level): | |
level = int((level / MAX_LEVEL) * cutout_const) | |
return (level, replace_value) | |
return level_to_args | |
def solarize_level_to_args(MAX_LEVEL): | |
def level_to_args(level): | |
level = int((level / MAX_LEVEL) * 256) | |
return (level, ) | |
return level_to_args | |
def none_level_to_args(level): | |
return () | |
def posterize_level_to_args(MAX_LEVEL): | |
def level_to_args(level): | |
level = int((level / MAX_LEVEL) * 4) | |
return (level, ) | |
return level_to_args | |
def rotate_level_to_args(MAX_LEVEL, replace_value): | |
def level_to_args(level): | |
level = (level / MAX_LEVEL) * 30 | |
if np.random.random() < 0.5: | |
level = -level | |
return (level, replace_value) | |
return level_to_args | |
func_dict = { | |
'Identity': identity_func, | |
'AutoContrast': autocontrast_func, | |
'Equalize': equalize_func, | |
'Rotate': rotate_func, | |
'Solarize': solarize_func, | |
'Color': color_func, | |
'Contrast': contrast_func, | |
'Brightness': brightness_func, | |
'Sharpness': sharpness_func, | |
'ShearX': shear_x_func, | |
'TranslateX': translate_x_func, | |
'TranslateY': translate_y_func, | |
'Posterize': posterize_func, | |
'ShearY': shear_y_func, | |
} | |
translate_const = 10 | |
MAX_LEVEL = 10 | |
replace_value = (128, 128, 128) | |
arg_dict = { | |
'Identity': none_level_to_args, | |
'AutoContrast': none_level_to_args, | |
'Equalize': none_level_to_args, | |
'Rotate': rotate_level_to_args(MAX_LEVEL, replace_value), | |
'Solarize': solarize_level_to_args(MAX_LEVEL), | |
'Color': enhance_level_to_args(MAX_LEVEL), | |
'Contrast': enhance_level_to_args(MAX_LEVEL), | |
'Brightness': enhance_level_to_args(MAX_LEVEL), | |
'Sharpness': enhance_level_to_args(MAX_LEVEL), | |
'ShearX': shear_level_to_args(MAX_LEVEL, replace_value), | |
'TranslateX': translate_level_to_args( | |
translate_const, MAX_LEVEL, replace_value | |
), | |
'TranslateY': translate_level_to_args( | |
translate_const, MAX_LEVEL, replace_value | |
), | |
'Posterize': posterize_level_to_args(MAX_LEVEL), | |
'ShearY': shear_level_to_args(MAX_LEVEL, replace_value), | |
} | |
class RandomAugment(object): | |
def __init__(self, N=2, M=10, isPIL=False, augs=[]): | |
self.N = N | |
self.M = M | |
self.isPIL = isPIL | |
if augs: | |
self.augs = augs | |
else: | |
self.augs = list(arg_dict.keys()) | |
def get_random_ops(self): | |
sampled_ops = np.random.choice(self.augs, self.N) | |
return [(op, 0.5, self.M) for op in sampled_ops] | |
def __call__(self, img): | |
if self.isPIL: | |
img = np.array(img) | |
ops = self.get_random_ops() | |
for name, prob, level in ops: | |
if np.random.random() > prob: | |
continue | |
args = arg_dict[name](level) | |
img = func_dict[name](img, *args) | |
return img | |
def build_transform(is_train, randaug=True, input_size=224, interpolation='bicubic', std_mode='IMAGENET_INCEPTION'): | |
if std_mode == 'IMAGENET_INCEPTION': | |
mean = IMAGENET_INCEPTION_MEAN | |
std = IMAGENET_INCEPTION_STD | |
elif std_mode == 'OPENAI_CLIP': | |
mean = OPENAI_CLIP_MEAN | |
std = OPENAI_CLIP_STD | |
else: | |
raise NotImplementedError | |
if is_train: | |
crop_scale = float(os.environ.get('TRAIN_CROP_SCALE', 0.9999)) | |
t = [ | |
RandomResizedCropAndInterpolation( | |
input_size, scale=(crop_scale, 1.0), interpolation='bicubic'), | |
# transforms.RandomHorizontalFlip(), | |
] | |
if randaug and os.environ.get('TRAIN_DO_AUG', 'False') == 'True': | |
print(f'@@@@@ Do random aug during training', flush=True) | |
t.append( | |
RandomAugment( | |
2, 7, isPIL=True, | |
augs=[ | |
'Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness', | |
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate', | |
])) | |
else: | |
print(f'@@@@@ Skip random aug during training', flush=True) | |
t += [ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=mean, std=std), | |
] | |
t = transforms.Compose(t) | |
else: | |
t = transforms.Compose([ | |
transforms.Resize((input_size, input_size), | |
interpolation=transforms.InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=mean, std=std) | |
]) | |
return t | |
def img2b64(img_path): | |
img = Image.open(img_path) # path to file | |
img_buffer = BytesIO() | |
img.save(img_buffer, format=img.format) | |
byte_data = img_buffer.getvalue() | |
base64_str = base64.b64encode(byte_data) # bytes | |
base64_str = base64_str.decode("utf-8") # str | |
return base64_str | |
def str2b64(str): | |
return base64.b64encode(str.encode('utf-8')).decode('utf-8') | |
def b642str(b64): | |
return base64.b64decode(b64).decode('utf-8') | |
def is_dist_avail_and_initialized(): | |
if not dist.is_available(): | |
return False | |
if not dist.is_initialized(): | |
return False | |
return True | |
def get_world_size(): | |
if not is_dist_avail_and_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not is_dist_avail_and_initialized(): | |
return 0 | |
return dist.get_rank() | |
def all_gather(data): | |
""" | |
Run all_gather on arbitrary picklable data (not necessarily tensors) | |
Args: | |
data: any picklable object | |
Returns: | |
list[data]: list of data gathered from each rank | |
""" | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
# serialized to a Tensor | |
buffer = pickle.dumps(data) | |
storage = torch.ByteStorage.from_buffer(buffer) | |
tensor = torch.ByteTensor(storage).to("cuda") | |
# obtain Tensor size of each rank | |
local_size = torch.LongTensor([tensor.numel()]).to("cuda") | |
size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)] | |
dist.all_gather(size_list, local_size) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
# receiving Tensor from all ranks | |
# we pad the tensor because torch all_gather does not support | |
# gathering tensors of different shapes | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) | |
if local_size != max_size: | |
padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") | |
tensor = torch.cat((tensor, padding), dim=0) | |
dist.all_gather(tensor_list, tensor) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |
def mean(lst): | |
return sum(lst) / len(lst) | |
def stop_gradient_by_name(name: str): | |
def apply_fn(module): | |
if hasattr(module, name): | |
getattr(module, name).requires_grad_(False) | |
return apply_fn | |