frappuccino's picture
Upload folder using huggingface_hub
0140c70 verified
import gc
import math
import timm
import torch
from torch import Tensor
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from typing import List, Optional, Tuple, Union
from transformers import AutoConfig, AutoModelForCausalLM
from transformers import MistralForCausalLM, MistralModel, MistralConfig
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from omnilmm.model.utils import build_transform
from omnilmm.model.resampler import Resampler
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
class OmniLMMConfig(MistralConfig):
model_type = "omnilmm"
class Identity(torch.nn.Identity):
def forward(self, input: Tensor, **kwargs) -> Tensor:
return super().forward(input)
def create_vision_module(config):
vision_tower = timm.create_model('eva02_enormous_patch14_clip_224.laion2b_plus',
pretrained=False,
num_classes=0,
dynamic_img_size=True,
dynamic_img_pad=True)
if isinstance(vision_tower, timm.models.VisionTransformer):
if vision_tower.attn_pool is not None:
vision_tower.attn_pool = Identity()
# use 2nd last layer's output
vision_tower.blocks[-1] = Identity()
embed_dim = config.hidden_size
resampler = Resampler(
grid_size=int(math.sqrt(config.num_query)),
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_tower.embed_dim,
)
return vision_tower, resampler
class OmniLMMModel(MistralModel):
config_class = OmniLMMConfig
def __init__(self, config: OmniLMMConfig, mm_vision_tower=None, mm_hidden_size=None, tune_clip=True):
super(OmniLMMModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
vision_tower, resampler = create_vision_module(config)
# print(__file__, 'skip loading vision tower weights')
# HACK: for FSDP
self.vision_tower = [vision_tower]
self.resampler = resampler
if tune_clip:
self.vision_tower = self.vision_tower[0]
self.vision_config = lambda x: None
def initialize_vision_modules(self, vision_tower, no_randaug, num_query, image_size, tune_clip=False):
self.config.mm_vision_tower = vision_tower
self.config.use_mm_proj = True
self.config.num_query = num_query
self.config.image_size = image_size
if not hasattr(self, 'vision_tower'):
vision_tower, resampler = create_vision_module(self.config)
state_dict = torch.load(
'/tt/data/public/multimodal/multimodal_model_ckpts/timm/eva02_enormous_patch14_clip_224.laion2b_plus.pt')
vision_tower.load_state_dict(state_dict, strict=False)
del state_dict
gc.collect()
else:
if isinstance(self.vision_tower, list):
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
resampler = self.resampler
self.vision_tower = vision_tower if tune_clip else [vision_tower]
self.resampler = resampler
train_img_transform = build_transform(
is_train=True, randaug=not no_randaug, input_size=self.config.image_size, std_mode='OPENAI_CLIP')
eval_img_transform = build_transform(
is_train=False, input_size=self.config.image_size, std_mode='OPENAI_CLIP')
return dict(
image_processor=(train_img_transform, eval_img_transform),
image_token_len=num_query,
vision_config=self.vision_config
)
def get_vision_embedding(self, pixel_values):
if isinstance(self.vision_tower, list):
vision_tower = self.vision_tower[0] # HACK: for FSDP
else:
vision_tower = self.vision_tower
dtype = vision_tower.pos_embed.data.dtype
vision_embedding = vision_tower.forward_features(
pixel_values.type(dtype))
if hasattr(vision_tower, 'num_prefix_tokens') and vision_tower.num_prefix_tokens > 0:
vision_embedding = vision_embedding[:,
vision_tower.num_prefix_tokens:]
res = self.resampler(vision_embedding)
return res
def get_vllm_embedding(self, data):
if 'vision_hidden_states' not in data:
pixel_values_list = data['pixel_values']
vision_hidden_states = []
for pixel_values in pixel_values_list:
if len(pixel_values) > 0:
vision_hidden_states.append(self.get_vision_embedding(pixel_values.unsqueeze(0))[0])
else:
vision_hidden_states.append([])
else:
vision_hidden_states = data['vision_hidden_states']
#vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
inputs_embeds = self.embed_tokens(data['input_ids'])
vision_hidden_states = [i.type(inputs_embeds.dtype)
if isinstance(i, torch.Tensor) else i for i in vision_hidden_states
]
# HACK: replace back original embeddings for LLaVA pretraining
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
new_input_embeds = []
cur_image_idx = 0
for cur_input_ids, cur_input_embeds in zip(data['input_ids'], inputs_embeds):
if (cur_input_ids == self.vision_config.im_patch_token).sum() == 0:
# multimodal LLM, but the current sample is not multimodal
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
new_input_embeds.append(cur_input_embeds)
continue
if self.vision_config.use_im_start_end:
cur_image_features = vision_hidden_states[cur_image_idx]
num_patches = cur_image_features.shape[0]
if (cur_input_ids == self.vision_config.im_start_token).sum() != (cur_input_ids == self.vision_config.im_end_token).sum():
raise ValueError(
"The number of image start tokens and image end tokens should be the same.")
image_start_tokens = torch.where(
cur_input_ids == self.vision_config.im_start_token)[0]
for image_start_token_pos in image_start_tokens:
cur_image_features = vision_hidden_states[cur_image_idx].to(
device=cur_input_embeds.device)
num_patches = cur_image_features.shape[0]
if cur_input_ids[image_start_token_pos + num_patches + 1] != self.vision_config.im_end_token:
raise ValueError(
"The image end token should follow the image start token.")
if orig_embeds_params is not None:
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features,
cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
else:
cur_new_input_embeds = torch.cat(
(cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
cur_image_idx += 1
new_input_embeds.append(cur_new_input_embeds)
else:
raise NotImplementedError
inputs_embeds = torch.stack(new_input_embeds, dim=0)
return inputs_embeds, vision_hidden_states
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
**kwargs
) -> Union[Tuple, BaseModelOutputWithPast]:
# HACK: replace back original embeddings for LLaVA pretraining
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
if inputs_embeds is None and past_key_values is None:
inputs_embeds = self.embed_tokens(input_ids)
vision_tower = getattr(self, 'vision_tower', None)
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.get_vision_embedding(image.unsqueeze(0))[
0]
image_features.append(image_forward_out)
else:
image_features = self.get_vision_embedding(images)
dummy_image_features = torch.zeros(
self.config.num_query,
self.config.hidden_size,
device=inputs_embeds.device,
dtype=inputs_embeds.dtype)
new_input_embeds = []
cur_image_idx = 0
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
if (cur_input_ids == self.vision_config.im_patch_token).sum() == 0:
# multimodal LLM, but the current sample is not multimodal
cur_input_embeds = cur_input_embeds + \
(0. * dummy_image_features).sum()
new_input_embeds.append(cur_input_embeds)
continue
if self.vision_config.use_im_start_end:
cur_image_features = image_features[cur_image_idx]
num_patches = cur_image_features.shape[0]
if (cur_input_ids == self.vision_config.im_start_token).sum() != (cur_input_ids == self.vision_config.im_end_token).sum():
raise ValueError(
"The number of image start tokens and image end tokens should be the same.")
image_start_tokens = torch.where(
cur_input_ids == self.vision_config.im_start_token)[0]
for image_start_token_pos in image_start_tokens:
cur_image_features = image_features[cur_image_idx].to(
device=cur_input_embeds.device)
num_patches = cur_image_features.shape[0]
if cur_input_ids[image_start_token_pos + num_patches + 1] != self.vision_config.im_end_token:
raise ValueError(
"The image end token should follow the image start token.")
if orig_embeds_params is not None:
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features,
cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
else:
cur_new_input_embeds = torch.cat(
(cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
cur_image_idx += 1
new_input_embeds.append(cur_new_input_embeds)
else:
raise NotImplementedError
inputs_embeds = torch.stack(new_input_embeds, dim=0)
input_ids = None
return super(OmniLMMModel, self).forward(
input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values,
inputs_embeds=inputs_embeds, use_cache=use_cache,
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs
)
class OmniLMMForCausalLM(MistralForCausalLM):
config_class = OmniLMMConfig
def __init__(self, config, mm_vision_tower=None, tune_clip=True):
super(MistralForCausalLM, self).__init__(config)
self.model = OmniLMMModel(
config, mm_vision_tower=mm_vision_tower, tune_clip=tune_clip)
self.lm_head = nn.Linear(
config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
**kwargs
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# print(f'@@@ At forward, labels: {labels.shape}-{labels}', flush=True)
# print(f'@@@ At forward, input_ids: {input_ids.shape}-{input_ids}', flush=True)
# print(f'@@@ At forward, input_ids: {attention_mask.shape}-{attention_mask}', flush=True)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
images=images,
**kwargs
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model/pipeline parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# TODO could be removed for generate_vllm()
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"images": kwargs.get("images", None),
}
)
return model_inputs
def generate_vllm(
self,
input_ids: torch.LongTensor = None,
images: Optional[torch.FloatTensor] = None,
vision_hidden_states=None,
return_vision_hidden_states=False,
**kwargs
):
model_inputs = {'input_ids': input_ids}
if vision_hidden_states is None:
model_inputs['pixel_values'] = images
else:
model_inputs['vision_hidden_states'] = vision_hidden_states
with torch.inference_mode():
inputs_embeds, vision_hidden_states = self.model.get_vllm_embedding(model_inputs)
result = self.generate(
inputs_embeds=inputs_embeds,
**kwargs
)
if return_vision_hidden_states:
return result, vision_hidden_states
return result
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
tune_mm_mlp_adapter=False):
self.model.vision_config.use_im_start_end = mm_use_im_start_end
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
self.model.vision_config.im_start_token, self.model.vision_config.im_end_token = tokenizer.convert_tokens_to_ids(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
# for new sft data
num_new_tokens = tokenizer.add_tokens(
['<box>', '</box>', '<ref>', '</ref>', '<quad>', '</quad>'], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if tune_mm_mlp_adapter:
self.model.orig_embeds_params = [
self.get_input_embeddings().weight.data.clone().to(device=device)]
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
self.model.vision_config.im_patch_token = tokenizer.convert_tokens_to_ids(
[DEFAULT_IMAGE_PATCH_TOKEN])[0]
print(f'Tokenizer: {tokenizer}\n patch_token_id: {self.model.vision_config.im_patch_token}, visoin_config: {self.model.vision_config}', flush=True)
# exit()
AutoConfig.register("omnilmm", OmniLMMConfig)
AutoModelForCausalLM.register(OmniLMMConfig, OmniLMMForCausalLM)