Spaces:
Sleeping
Sleeping
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import torchaudio
|
5 |
+
import time
|
6 |
+
from datetime import datetime
|
7 |
+
from tortoise.api import TextToSpeech
|
8 |
+
from tortoise.utils.text import split_and_recombine_text
|
9 |
+
from tortoise.utils.audio import load_audio, load_voice, load_voices
|
10 |
+
|
11 |
+
VOICE_OPTIONS = [
|
12 |
+
"angie",
|
13 |
+
"cond_latent_example",
|
14 |
+
"deniro",
|
15 |
+
"freeman",
|
16 |
+
"halle",
|
17 |
+
"lj",
|
18 |
+
"myself",
|
19 |
+
"pat2",
|
20 |
+
"snakes",
|
21 |
+
"tom",
|
22 |
+
"train_daws",
|
23 |
+
"train_dreams",
|
24 |
+
"train_grace",
|
25 |
+
"train_lescault",
|
26 |
+
"weaver",
|
27 |
+
"applejack",
|
28 |
+
"daniel",
|
29 |
+
"emma",
|
30 |
+
"geralt",
|
31 |
+
"jlaw",
|
32 |
+
"mol",
|
33 |
+
"pat",
|
34 |
+
"rainbow",
|
35 |
+
"tim_reynolds",
|
36 |
+
"train_atkins",
|
37 |
+
"train_dotrice",
|
38 |
+
"train_empire",
|
39 |
+
"train_kennard",
|
40 |
+
"train_mouse",
|
41 |
+
"william",
|
42 |
+
"random", # special option for random voice
|
43 |
+
"disabled", # special option for disabled voice
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
def inference(
|
48 |
+
text,
|
49 |
+
script,
|
50 |
+
name,
|
51 |
+
voice,
|
52 |
+
voice_b,
|
53 |
+
voice_c,
|
54 |
+
preset,
|
55 |
+
seed,
|
56 |
+
regenerate,
|
57 |
+
split_by_newline,
|
58 |
+
):
|
59 |
+
if regenerate.strip() == "":
|
60 |
+
regenerate = None
|
61 |
+
|
62 |
+
if name.strip() == "":
|
63 |
+
raise gr.Error("No name provided")
|
64 |
+
|
65 |
+
if text is None or text.strip() == "":
|
66 |
+
with open(script.name) as f:
|
67 |
+
text = f.read()
|
68 |
+
if text.strip() == "":
|
69 |
+
raise gr.Error("Please provide either text or script file with content.")
|
70 |
+
|
71 |
+
if split_by_newline == "Yes":
|
72 |
+
texts = list(filter(lambda x: x.strip() != "", text.split("\n")))
|
73 |
+
else:
|
74 |
+
texts = split_and_recombine_text(text)
|
75 |
+
|
76 |
+
os.makedirs(os.path.join("longform", name), exist_ok=True)
|
77 |
+
|
78 |
+
if regenerate is not None:
|
79 |
+
regenerate = list(map(int, regenerate.split()))
|
80 |
+
|
81 |
+
voices = [voice]
|
82 |
+
if voice_b != "disabled":
|
83 |
+
voices.append(voice_b)
|
84 |
+
if voice_c != "disabled":
|
85 |
+
voices.append(voice_c)
|
86 |
+
|
87 |
+
if len(voices) == 1:
|
88 |
+
voice_samples, conditioning_latents = load_voice(voice)
|
89 |
+
else:
|
90 |
+
voice_samples, conditioning_latents = load_voices(voices)
|
91 |
+
|
92 |
+
start_time = time.time()
|
93 |
+
|
94 |
+
all_parts = []
|
95 |
+
for j, text in enumerate(texts):
|
96 |
+
if regenerate is not None and j + 1 not in regenerate:
|
97 |
+
all_parts.append(
|
98 |
+
load_audio(os.path.join("longform", name, f"{j+1}.wav"), 24000)
|
99 |
+
)
|
100 |
+
continue
|
101 |
+
gen = tts.tts_with_preset(
|
102 |
+
text,
|
103 |
+
voice_samples=voice_samples,
|
104 |
+
conditioning_latents=conditioning_latents,
|
105 |
+
preset=preset,
|
106 |
+
k=1,
|
107 |
+
use_deterministic_seed=seed,
|
108 |
+
)
|
109 |
+
|
110 |
+
gen = gen.squeeze(0).cpu()
|
111 |
+
torchaudio.save(os.path.join("longform", name, f"{j+1}.wav"), gen, 24000)
|
112 |
+
|
113 |
+
all_parts.append(gen)
|
114 |
+
|
115 |
+
full_audio = torch.cat(all_parts, dim=-1)
|
116 |
+
|
117 |
+
os.makedirs("outputs", exist_ok=True)
|
118 |
+
torchaudio.save(os.path.join("outputs", f"{name}.wav"), full_audio, 24000)
|
119 |
+
|
120 |
+
with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
|
121 |
+
f.write(
|
122 |
+
f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
|
123 |
+
)
|
124 |
+
|
125 |
+
output_texts = [f"({j+1}) {texts[j]}" for j in range(len(texts))]
|
126 |
+
|
127 |
+
return ((24000, full_audio.squeeze().cpu().numpy()), "\n".join(output_texts))
|
128 |
+
|
129 |
+
|
130 |
+
def main():
|
131 |
+
text = gr.Textbox(
|
132 |
+
lines=4,
|
133 |
+
label="Text (Provide either text, or upload a newline separated text file below):",
|
134 |
+
)
|
135 |
+
script = gr.File(label="Upload a text file")
|
136 |
+
name = gr.Textbox(
|
137 |
+
lines=1, label="Name of the output file / folder to store intermediate results:"
|
138 |
+
)
|
139 |
+
preset = gr.Radio(
|
140 |
+
["ultra_fast", "fast", "standard", "high_quality"],
|
141 |
+
value="fast",
|
142 |
+
label="Preset mode (determines quality with tradeoff over speed):",
|
143 |
+
type="value",
|
144 |
+
)
|
145 |
+
voice = gr.Dropdown(
|
146 |
+
VOICE_OPTIONS, value="angie", label="Select voice:", type="value"
|
147 |
+
)
|
148 |
+
voice_b = gr.Dropdown(
|
149 |
+
VOICE_OPTIONS,
|
150 |
+
value="disabled",
|
151 |
+
label="(Optional) Select second voice:",
|
152 |
+
type="value",
|
153 |
+
)
|
154 |
+
voice_c = gr.Dropdown(
|
155 |
+
VOICE_OPTIONS,
|
156 |
+
value="disabled",
|
157 |
+
label="(Optional) Select third voice:",
|
158 |
+
type="value",
|
159 |
+
)
|
160 |
+
seed = gr.Number(value=0, precision=0, label="Seed (for reproducibility):")
|
161 |
+
regenerate = gr.Textbox(
|
162 |
+
lines=1,
|
163 |
+
label="Comma-separated indices of clips to regenerate [starting from 1]",
|
164 |
+
)
|
165 |
+
split_by_newline = gr.Radio(
|
166 |
+
["Yes", "No"],
|
167 |
+
label="Split by newline (If [No], it will automatically try to find relevant splits):",
|
168 |
+
type="value",
|
169 |
+
value="No",
|
170 |
+
)
|
171 |
+
output_audio = gr.Audio(label="Combined audio:")
|
172 |
+
output_text = gr.Textbox(label="Split texts with indices:", lines=10)
|
173 |
+
|
174 |
+
interface = gr.Interface(
|
175 |
+
fn=inference,
|
176 |
+
inputs=[
|
177 |
+
text,
|
178 |
+
script,
|
179 |
+
name,
|
180 |
+
voice,
|
181 |
+
voice_b,
|
182 |
+
voice_c,
|
183 |
+
preset,
|
184 |
+
seed,
|
185 |
+
regenerate,
|
186 |
+
split_by_newline,
|
187 |
+
],
|
188 |
+
outputs=[output_audio, output_text],
|
189 |
+
)
|
190 |
+
interface.launch(share=True)
|
191 |
+
|
192 |
+
|
193 |
+
if __name__ == "__main__":
|
194 |
+
tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True)
|
195 |
+
|
196 |
+
with open("Tortoise_TTS_Runs_Scripts.log", "a") as f:
|
197 |
+
f.write(
|
198 |
+
f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n"
|
199 |
+
)
|
200 |
+
|
201 |
+
main()
|