Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,7 +24,7 @@ if 'feedback' not in st.session_state:
|
|
24 |
st.session_state.feedback = {}
|
25 |
|
26 |
# Define subset size
|
27 |
-
SUBSET_SIZE = 500
|
28 |
|
29 |
class TextDataset(Dataset):
|
30 |
def __init__(self, texts: List[str], tokenizer, max_length: int = 512):
|
@@ -44,6 +44,109 @@ class TextDataset(Dataset):
|
|
44 |
return_tensors="pt"
|
45 |
)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
@st.cache_resource
|
48 |
def load_data_and_model():
|
49 |
"""Load the dataset and model with optimized memory usage"""
|
@@ -111,7 +214,7 @@ def precompute_embeddings(data: pd.DataFrame, model, tokenizer, batch_size: int
|
|
111 |
batch_size=batch_size,
|
112 |
shuffle=False,
|
113 |
collate_fn=partial(collate_fn, pad_token_id=tokenizer.pad_token_id),
|
114 |
-
num_workers=2,
|
115 |
pin_memory=True
|
116 |
)
|
117 |
|
@@ -175,7 +278,6 @@ st.info(f"Running with a subset of {SUBSET_SIZE} repositories for testing purpos
|
|
175 |
# Precompute embeddings for the subset
|
176 |
data = precompute_embeddings(data, model, tokenizer)
|
177 |
|
178 |
-
|
179 |
# Main App Interface
|
180 |
st.title("Repository Recommender System π")
|
181 |
st.caption("Testing Version - Running on subset of data")
|
@@ -199,50 +301,16 @@ if search_button and user_query.strip():
|
|
199 |
# Generate query embedding and get recommendations
|
200 |
query_embedding = generate_query_embedding(model, tokenizer, user_query)
|
201 |
recommendations = find_similar_repos(query_embedding, data, top_n)
|
202 |
-
|
203 |
# Save to history
|
204 |
st.session_state.history.append({
|
205 |
'query': user_query,
|
206 |
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
207 |
'results': recommendations['repo'].tolist()
|
208 |
})
|
209 |
-
|
210 |
-
# Display recommendations
|
211 |
-
|
212 |
-
for idx, row in recommendations.iterrows():
|
213 |
-
st.markdown(f"#### Repository {idx + 1}: {row['repo']}")
|
214 |
-
|
215 |
-
# Repository details in columns
|
216 |
-
col1, col2 = st.columns([2, 1])
|
217 |
-
with col1:
|
218 |
-
st.markdown(f"**URL:** [View Repository]({row['url']})")
|
219 |
-
st.markdown(f"**Path:** `{row['path']}`")
|
220 |
-
with col2:
|
221 |
-
st.metric("Match Score", f"{row['similarity']:.2%}")
|
222 |
-
|
223 |
-
# Feedback buttons in columns
|
224 |
-
feedback_col1, feedback_col2 = st.columns([1, 4])
|
225 |
-
with feedback_col1:
|
226 |
-
if st.button("π", key=f"like_{idx}"):
|
227 |
-
save_feedback(row['repo'], 'likes')
|
228 |
-
st.success("Thanks for your feedback!")
|
229 |
-
if st.button("π", key=f"dislike_{idx}"):
|
230 |
-
save_feedback(row['repo'], 'dislikes')
|
231 |
-
st.success("Thanks for your feedback!")
|
232 |
-
|
233 |
-
# Case Study and Documentation in tabs instead of nested expanders
|
234 |
-
tab1, tab2 = st.tabs(["π Case Study Brief", "π Documentation"])
|
235 |
-
|
236 |
-
with tab1:
|
237 |
-
st.markdown(generate_case_study(row))
|
238 |
-
|
239 |
-
with tab2:
|
240 |
-
if row['docstring']:
|
241 |
-
st.markdown(row['docstring'])
|
242 |
-
else:
|
243 |
-
st.info("No documentation available")
|
244 |
-
|
245 |
-
st.markdown("---") # Separator between repositories
|
246 |
|
247 |
# Sidebar for History and Stats
|
248 |
with st.sidebar:
|
@@ -274,4 +342,4 @@ st.markdown(
|
|
274 |
GPU Status: {'π’ Enabled' if torch.cuda.is_available() else 'π΄ Disabled'} |
|
275 |
Model: CodeT5-Small
|
276 |
"""
|
277 |
-
)
|
|
|
24 |
st.session_state.feedback = {}
|
25 |
|
26 |
# Define subset size
|
27 |
+
SUBSET_SIZE = 500 # Starting with 500 items for quick testing
|
28 |
|
29 |
class TextDataset(Dataset):
|
30 |
def __init__(self, texts: List[str], tokenizer, max_length: int = 512):
|
|
|
44 |
return_tensors="pt"
|
45 |
)
|
46 |
|
47 |
+
def generate_case_study(row: Dict[str, Any]) -> str:
|
48 |
+
"""Generate a detailed case study for a repository using available metadata"""
|
49 |
+
# Extract relevant information from the row
|
50 |
+
summary = row.get('summary', '').strip()
|
51 |
+
docstring = row.get('docstring', '').strip()
|
52 |
+
repo_name = row.get('repo', '').strip()
|
53 |
+
|
54 |
+
# Generate a more detailed overview using available information
|
55 |
+
overview = summary if summary else "This repository provides a software implementation"
|
56 |
+
if docstring:
|
57 |
+
# Extract the first paragraph of the docstring for additional context
|
58 |
+
first_para = docstring.split('\n\n')[0].strip()
|
59 |
+
overview = f"{overview}. {first_para}"
|
60 |
+
|
61 |
+
# Analyze the repository path to infer technology stack
|
62 |
+
path_components = row.get('path', '').lower().split('/')
|
63 |
+
tech_stack = []
|
64 |
+
|
65 |
+
# Common technology indicators in paths
|
66 |
+
if any('python' in comp for comp in path_components):
|
67 |
+
tech_stack.append("Python")
|
68 |
+
if any('tensorflow' in comp or 'tf' in comp for comp in path_components):
|
69 |
+
tech_stack.append("TensorFlow")
|
70 |
+
if any('pytorch' in comp for comp in path_components):
|
71 |
+
tech_stack.append("PyTorch")
|
72 |
+
if any('react' in comp for comp in path_components):
|
73 |
+
tech_stack.append("React")
|
74 |
+
|
75 |
+
tech_stack_str = ", ".join(tech_stack) if tech_stack else "various technologies"
|
76 |
+
|
77 |
+
case_study = f"""
|
78 |
+
### Overview
|
79 |
+
{overview}
|
80 |
+
|
81 |
+
### Technical Implementation
|
82 |
+
This project is built using {tech_stack_str}. The implementation focuses on providing a robust and maintainable solution for {summary.lower() if summary else 'the specified requirements'}.
|
83 |
+
|
84 |
+
### Key Features
|
85 |
+
- Primary functionality: {summary if summary else 'Implementation of core project requirements'}
|
86 |
+
- Complete documentation and code examples
|
87 |
+
- Well-structured implementation following best practices
|
88 |
+
- Modular design for easy integration and customization
|
89 |
+
|
90 |
+
### Use Cases
|
91 |
+
This repository is particularly valuable for:
|
92 |
+
- Developers implementing similar functionality in their projects
|
93 |
+
- Teams looking for reference implementations and best practices
|
94 |
+
- Projects requiring similar technical capabilities
|
95 |
+
- Learning and educational purposes in related technical domains
|
96 |
+
|
97 |
+
### Integration Considerations
|
98 |
+
The repository can be integrated into existing projects, with consideration for:
|
99 |
+
- Compatibility with existing technology stacks
|
100 |
+
- Required dependencies and prerequisites
|
101 |
+
- Potential customization needs
|
102 |
+
- Performance and scalability requirements
|
103 |
+
"""
|
104 |
+
return case_study
|
105 |
+
|
106 |
+
def display_recommendations(recommendations: pd.DataFrame):
|
107 |
+
"""Display recommendations in a list format with all details"""
|
108 |
+
st.markdown("### π― Top Recommendations")
|
109 |
+
|
110 |
+
# Create a list of recommendations
|
111 |
+
for idx, row in recommendations.iterrows():
|
112 |
+
with st.container():
|
113 |
+
# Header with repository name and match score
|
114 |
+
col1, col2 = st.columns([3, 1])
|
115 |
+
with col1:
|
116 |
+
st.markdown(f"### {idx + 1}. {row['repo']}")
|
117 |
+
with col2:
|
118 |
+
st.metric("Match Score", f"{row['similarity']:.2%}")
|
119 |
+
|
120 |
+
# Repository details
|
121 |
+
st.markdown(f"**URL:** [View Repository]({row['url']})")
|
122 |
+
st.markdown(f"**Path:** `{row['path']}`")
|
123 |
+
|
124 |
+
# Feedback buttons
|
125 |
+
col1, col2, col3 = st.columns([1, 1, 4])
|
126 |
+
with col1:
|
127 |
+
if st.button("π", key=f"like_{idx}"):
|
128 |
+
st.session_state.feedback[row['repo']] = st.session_state.feedback.get(row['repo'], {'likes': 0, 'dislikes': 0})
|
129 |
+
st.session_state.feedback[row['repo']]['likes'] += 1
|
130 |
+
st.success("Thanks for your feedback!")
|
131 |
+
with col2:
|
132 |
+
if st.button("π", key=f"dislike_{idx}"):
|
133 |
+
st.session_state.feedback[row['repo']] = st.session_state.feedback.get(row['repo'], {'likes': 0, 'dislikes': 0})
|
134 |
+
st.session_state.feedback[row['repo']]['dislikes'] += 1
|
135 |
+
st.success("Thanks for your feedback!")
|
136 |
+
|
137 |
+
# Documentation and case study in tabs
|
138 |
+
tab1, tab2 = st.tabs(["π Documentation", "π Case Study"])
|
139 |
+
with tab1:
|
140 |
+
if row['docstring']:
|
141 |
+
st.markdown(row['docstring'])
|
142 |
+
else:
|
143 |
+
st.info("No documentation available")
|
144 |
+
|
145 |
+
with tab2:
|
146 |
+
st.markdown(generate_case_study(row))
|
147 |
+
|
148 |
+
st.markdown("---")
|
149 |
+
|
150 |
@st.cache_resource
|
151 |
def load_data_and_model():
|
152 |
"""Load the dataset and model with optimized memory usage"""
|
|
|
214 |
batch_size=batch_size,
|
215 |
shuffle=False,
|
216 |
collate_fn=partial(collate_fn, pad_token_id=tokenizer.pad_token_id),
|
217 |
+
num_workers=2,
|
218 |
pin_memory=True
|
219 |
)
|
220 |
|
|
|
278 |
# Precompute embeddings for the subset
|
279 |
data = precompute_embeddings(data, model, tokenizer)
|
280 |
|
|
|
281 |
# Main App Interface
|
282 |
st.title("Repository Recommender System π")
|
283 |
st.caption("Testing Version - Running on subset of data")
|
|
|
301 |
# Generate query embedding and get recommendations
|
302 |
query_embedding = generate_query_embedding(model, tokenizer, user_query)
|
303 |
recommendations = find_similar_repos(query_embedding, data, top_n)
|
304 |
+
|
305 |
# Save to history
|
306 |
st.session_state.history.append({
|
307 |
'query': user_query,
|
308 |
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
309 |
'results': recommendations['repo'].tolist()
|
310 |
})
|
311 |
+
|
312 |
+
# Display recommendations using the new function
|
313 |
+
display_recommendations(recommendations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
# Sidebar for History and Stats
|
316 |
with st.sidebar:
|
|
|
342 |
GPU Status: {'π’ Enabled' if torch.cuda.is_available() else 'π΄ Disabled'} |
|
343 |
Model: CodeT5-Small
|
344 |
"""
|
345 |
+
)
|