Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -34,10 +34,109 @@ import fairseq
|
|
34 |
from fairseq import checkpoint_utils, options, tasks, utils
|
35 |
from fairseq.dataclass.configs import GenerationConfig
|
36 |
from huggingface_hub import hf_hub_download
|
|
|
37 |
|
38 |
ckpt_path = hf_hub_download('vumichien/AV-HuBERT', 'model.pt')
|
39 |
user_dir = "/home/user/app/av_hubert/avhubert"
|
40 |
face_detector_path = "/home/user/app/mmod_human_face_detector.dat"
|
41 |
face_predictor_path = "/home/user/app/shape_predictor_68_face_landmarks.dat"
|
42 |
mean_face_path = "/home/user/app/20words_mean_face.npy"
|
43 |
-
mouth_roi_path = "/home/user/app/roi.mp4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
from fairseq import checkpoint_utils, options, tasks, utils
|
35 |
from fairseq.dataclass.configs import GenerationConfig
|
36 |
from huggingface_hub import hf_hub_download
|
37 |
+
import gradio as gr
|
38 |
|
39 |
ckpt_path = hf_hub_download('vumichien/AV-HuBERT', 'model.pt')
|
40 |
user_dir = "/home/user/app/av_hubert/avhubert"
|
41 |
face_detector_path = "/home/user/app/mmod_human_face_detector.dat"
|
42 |
face_predictor_path = "/home/user/app/shape_predictor_68_face_landmarks.dat"
|
43 |
mean_face_path = "/home/user/app/20words_mean_face.npy"
|
44 |
+
mouth_roi_path = "/home/user/app/roi.mp4"
|
45 |
+
|
46 |
+
def detect_landmark(image, detector, predictor):
|
47 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
48 |
+
face_locations = detector(gray, 1)
|
49 |
+
coords = None
|
50 |
+
for (_, face_location) in enumerate(face_locations):
|
51 |
+
if torch.cuda.is_available():
|
52 |
+
rect = face_location.rect
|
53 |
+
else:
|
54 |
+
rect = face_location
|
55 |
+
shape = predictor(gray, rect)
|
56 |
+
coords = np.zeros((68, 2), dtype=np.int32)
|
57 |
+
for i in range(0, 68):
|
58 |
+
coords[i] = (shape.part(i).x, shape.part(i).y)
|
59 |
+
return coords
|
60 |
+
|
61 |
+
def preprocess_video(input_video_path):
|
62 |
+
if torch.cuda.is_available():
|
63 |
+
detector = dlib.cnn_face_detection_model_v1(face_detector_path)
|
64 |
+
else:
|
65 |
+
detector = dlib.get_frontal_face_detector()
|
66 |
+
|
67 |
+
predictor = dlib.shape_predictor(face_predictor_path)
|
68 |
+
STD_SIZE = (256, 256)
|
69 |
+
mean_face_landmarks = np.load(mean_face_path)
|
70 |
+
stablePntsIDs = [33, 36, 39, 42, 45]
|
71 |
+
videogen = skvideo.io.vread(input_video_path)
|
72 |
+
frames = np.array([frame for frame in videogen])
|
73 |
+
landmarks = []
|
74 |
+
for frame in tqdm(frames):
|
75 |
+
landmark = detect_landmark(frame, detector, predictor)
|
76 |
+
landmarks.append(landmark)
|
77 |
+
preprocessed_landmarks = landmarks_interpolate(landmarks)
|
78 |
+
rois = crop_patch(input_video_path, preprocessed_landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE,
|
79 |
+
window_margin=12, start_idx=48, stop_idx=68, crop_height=96, crop_width=96)
|
80 |
+
write_video_ffmpeg(rois, mouth_roi_path, "/usr/bin/ffmpeg")
|
81 |
+
return mouth_roi_path
|
82 |
+
|
83 |
+
def predict(process_video):
|
84 |
+
num_frames = int(cv2.VideoCapture(process_video).get(cv2.CAP_PROP_FRAME_COUNT))
|
85 |
+
data_dir = tempfile.mkdtemp()
|
86 |
+
tsv_cont = ["/\n", f"test-0\t{process_video}\t{None}\t{num_frames}\t{int(16_000*num_frames/25)}\n"]
|
87 |
+
label_cont = ["DUMMY\n"]
|
88 |
+
with open(f"{data_dir}/test.tsv", "w") as fo:
|
89 |
+
fo.write("".join(tsv_cont))
|
90 |
+
with open(f"{data_dir}/test.wrd", "w") as fo:
|
91 |
+
fo.write("".join(label_cont))
|
92 |
+
utils.import_user_module(Namespace(user_dir=user_dir))
|
93 |
+
modalities = ["video"]
|
94 |
+
gen_subset = "test"
|
95 |
+
gen_cfg = GenerationConfig(beam=20)
|
96 |
+
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
|
97 |
+
models = [model.eval().cuda() if torch.cuda.is_available() else model.eval() for model in models]
|
98 |
+
saved_cfg.task.modalities = modalities
|
99 |
+
saved_cfg.task.data = data_dir
|
100 |
+
saved_cfg.task.label_dir = data_dir
|
101 |
+
task = tasks.setup_task(saved_cfg.task)
|
102 |
+
task.load_dataset(gen_subset, task_cfg=saved_cfg.task)
|
103 |
+
generator = task.build_generator(models, gen_cfg)
|
104 |
+
|
105 |
+
def decode_fn(x):
|
106 |
+
dictionary = task.target_dictionary
|
107 |
+
symbols_ignore = generator.symbols_to_strip_from_output
|
108 |
+
symbols_ignore.add(dictionary.pad())
|
109 |
+
return task.datasets[gen_subset].label_processors[0].decode(x, symbols_ignore)
|
110 |
+
|
111 |
+
itr = task.get_batch_iterator(dataset=task.dataset(gen_subset)).next_epoch_itr(shuffle=False)
|
112 |
+
sample = next(itr)
|
113 |
+
if torch.cuda.is_available():
|
114 |
+
sample = utils.move_to_cuda(sample)
|
115 |
+
hypos = task.inference_step(generator, models, sample)
|
116 |
+
ref = decode_fn(sample['target'][0].int().cpu())
|
117 |
+
hypo = hypos[0][0]['tokens'].int().cpu()
|
118 |
+
hypo = decode_fn(hypo)
|
119 |
+
return hypo
|
120 |
+
|
121 |
+
|
122 |
+
# ---- Gradio Layout -----
|
123 |
+
demo = gr.Blocks()
|
124 |
+
demo.encrypt = False
|
125 |
+
text_output = gr.Textbox()
|
126 |
+
with demo:
|
127 |
+
with gr.Row():
|
128 |
+
video_in = gr.Video(label="Input Video", mirror_webcam=False, interactive=True)
|
129 |
+
video_out = gr.Video(label="Audio Visual Video", mirror_webcam=False, interactive=True)
|
130 |
+
with gr.Row():
|
131 |
+
detect_landmark_btn = gr.Button("Detect landmark")
|
132 |
+
detect_landmark_btn.click(preprocess_video, [video_in], [
|
133 |
+
video_out])
|
134 |
+
predict_btn = gr.Button("Predict")
|
135 |
+
predict_btn.click(predict, [video_out], [
|
136 |
+
text_output])
|
137 |
+
with gr.Row():
|
138 |
+
# video_lip = gr.Video(label="Audio Visual Video", mirror_webcam=False)
|
139 |
+
text_output.render()
|
140 |
+
|
141 |
+
|
142 |
+
demo.launch(debug=True)
|