franco1102's picture
create app.py
d300616
import gradio as gr
from transformers import pipeline
trans = pipeline("automatic-speech-recognition", model = "facebook/wav2vec2-large-xlsr-53-spanish")
classificador = pipeline("text-classification", model = "pysentimiento/robertuito-sentiment-analysis")
def audio_a_texto(audio):
text = trans(audio)['text']
return text
def texto_a_sentimiento(text):
return classificador(text)[0]["label"]
demo = gr.Blocks()
with demo:
gr.Markdown("Second demo with Blocks")
with gr.Tabs():
with gr.TabItem("Transcribe audio"):
with gr.Row():
audio = gr.Audio(source="microphone", type = "filepath")
transcription = gr.Textbox()
b1 = gr.Button("Transcribe Audio")
#b1.click(fn=)
with gr.TabItem("Sentiment Analysis"):
with gr.Row():
text = gr.Textbox()
label = gr.Label()
b2 = gr.Button('Classify')
b1.click(audio_a_texto, inputs = audio, outputs = transcription)
b2.click(texto_a_sentimiento, inputs = text, outputs = label)
demo.launch()