TreeFormer / train.py
franciszzj's picture
init
c964d4c
raw
history blame
No virus
16.8 kB
import os
import time
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
import numpy as np
from datetime import datetime
import torch.nn.functional as F
from datasets.crowd import Crowd_TC, Crowd_UL_TC
from network import pvt_cls as TCN
from losses.multi_con_loss import MultiConLoss
from utils.pytorch_utils import Save_Handle, AverageMeter
import utils.log_utils as log_utils
import argparse
from losses.rank_loss import RankLoss
from losses import ramps
from losses.ot_loss import OT_Loss
from losses.consistency_loss import *
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('--data-dir', default='/users/k2254235/Lab/TCT/Dataset/London_103050/', help='data path')
parser.add_argument('--dataset', default='TC')
parser.add_argument('--lr', type=float, default=1e-5, help='the initial learning rate')
parser.add_argument('--weight-decay', type=float, default=1e-4, help='the weight decay')
parser.add_argument('--resume', default='', type=str, help='the path of resume training model')
parser.add_argument('--max-epoch', type=int, default=4000, help='max training epoch')
parser.add_argument('--val-epoch', type=int, default=1, help='the num of steps to log training information')
parser.add_argument('--val-start', type=int, default=0, help='the epoch start to val')
parser.add_argument('--batch-size', type=int, default=16, help='train batch size')
parser.add_argument('--batch-size-ul', type=int, default=16, help='train batch size')
parser.add_argument('--device', default='0', help='assign device')
parser.add_argument('--num-workers', type=int, default=0, help='the num of training process')
parser.add_argument('--crop-size', type=int, default= 256, help='the crop size of the train image')
parser.add_argument('--rl', type=float, default=1, help='entropy regularization in sinkhorn')
parser.add_argument('--reg', type=float, default=1, help='entropy regularization in sinkhorn')
parser.add_argument('--ot', type=float, default=0.1, help='entropy regularization in sinkhorn')
parser.add_argument('--tv', type=float, default=0.01, help='entropy regularization in sinkhorn')
parser.add_argument('--num-of-iter-in-ot', type=int, default=100, help='sinkhorn iterations')
parser.add_argument('--norm-cood', type=int, default=0, help='whether to norm cood when computing distance')
parser.add_argument('--run-name', default='Treeformer_test', help='run name for wandb interface/logging')
parser.add_argument('--consistency', type=int, default=1, help='whether to norm cood when computing distance')
args = parser.parse_args()
def train_collate(batch):
transposed_batch = list(zip(*batch))
images = torch.stack(transposed_batch[0], 0)
gauss = torch.stack(transposed_batch[1], 0)
points = transposed_batch[2]
gt_discretes = torch.stack(transposed_batch[3], 0)
return images, gauss, points, gt_discretes
def train_collate_UL(batch):
transposed_batch = list(zip(*batch))
images = torch.stack(transposed_batch[0], 0)
return images
def get_current_consistency_weight(epoch):
# Consistency ramp-up from https://arxiv.org/abs/1610.02242
return args.consistency * ramps.sigmoid_rampup(epoch, args.consistency_ramp)
class Trainer(object):
def __init__(self, args):
self.args = args
def setup(self):
args = self.args
sub_dir = (
"SEMI/{}_12-1-input-{}_reg-{}_nIter-{}_normCood-{}".format(
args.run_name,args.crop_size,args.reg,
args.num_of_iter_in_ot,args.norm_cood))
self.save_dir = os.path.join("/scratch/users/k2254235","ckpts", sub_dir)
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
time_str = datetime.strftime(datetime.now(), "%m%d-%H%M%S")
self.logger = log_utils.get_logger(
os.path.join(self.save_dir, "train-{:s}.log".format(time_str)))
log_utils.print_config(vars(args), self.logger)
if torch.cuda.is_available():
self.device = torch.device("cuda")
self.device_count = torch.cuda.device_count()
self.logger.info("using {} gpus".format(self.device_count))
else:
raise Exception("gpu is not available")
downsample_ratio = 4
self.datasets = {"train": Crowd_TC(os.path.join(args.data_dir, "train_data"), args.crop_size,
downsample_ratio, "train"), "val": Crowd_TC(os.path.join(args.data_dir, "valid_data"),
args.crop_size, downsample_ratio, "val")}
self.datasets_ul = { "train_ul": Crowd_UL_TC(os.path.join(args.data_dir, "train_data_ul"),
args.crop_size, downsample_ratio, "train_ul")}
self.dataloaders = {
x: DataLoader(self.datasets[x],
collate_fn=(train_collate if x == "train" else default_collate),
batch_size=(args.batch_size if x == "train" else 1),
shuffle=(True if x == "train" else False),
num_workers=args.num_workers * self.device_count,
pin_memory=(True if x == "train" else False))
for x in ["train", "val"]}
self.dataloaders_ul = {
x: DataLoader(self.datasets_ul[x],
collate_fn=(train_collate_UL ),
batch_size=(args.batch_size_ul),
shuffle=(True),
num_workers=args.num_workers * self.device_count,
pin_memory=(True if x == "train" else False))
for x in ["train_ul"]}
self.model = TCN.pvt_treeformer(pretrained=False)
self.model.to(self.device)
self.optimizer = optim.AdamW(self.model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
self.start_epoch = 0
if args.resume:
self.logger.info("loading pretrained model from " + args.resume)
suf = args.resume.rsplit(".", 1)[-1]
if suf == "tar":
checkpoint = torch.load(args.resume, self.device)
self.model.load_state_dict(checkpoint["model_state_dict"])
self.optimizer.load_state_dict(
checkpoint["optimizer_state_dict"])
self.start_epoch = checkpoint["epoch"] + 1
elif suf == "pth":
self.model.load_state_dict(
torch.load(args.resume, self.device))
else:
self.logger.info("random initialization")
self.ot_loss = OT_Loss(args.crop_size, downsample_ratio, args.norm_cood,
self.device, args.num_of_iter_in_ot, args.reg)
self.tvloss = nn.L1Loss(reduction="none").to(self.device)
self.mse = nn.MSELoss().to(self.device)
self.mae = nn.L1Loss().to(self.device)
self.save_list = Save_Handle(max_num=1)
self.best_mae = np.inf
self.best_mse = np.inf
self.rankloss = RankLoss().to(self.device)
self.kl_distance = nn.KLDivLoss(reduction='none')
self.multiconloss = MultiConLoss().to(self.device)
def train(self):
"""training process"""
args = self.args
for epoch in range(self.start_epoch, args.max_epoch + 1):
self.logger.info("-" * 5 + "Epoch {}/{}".format(epoch, args.max_epoch) + "-" * 5)
self.epoch = epoch
self.train_epoch()
if epoch % args.val_epoch == 0 and epoch >= args.val_start:
self.val_epoch()
def train_epoch(self):
epoch_ot_loss = AverageMeter()
epoch_ot_obj_value = AverageMeter()
epoch_wd = AverageMeter()
epoch_tv_loss = AverageMeter()
epoch_count_loss = AverageMeter()
epoch_count_consistency_l = AverageMeter()
epoch_count_consistency_ul = AverageMeter()
epoch_loss = AverageMeter()
epoch_mae = AverageMeter()
epoch_mse = AverageMeter()
epoch_start = time.time()
epoch_rank_loss = AverageMeter()
epoch_consistensy_loss = AverageMeter()
self.model.train() # Set model to training mode
for step, (inputs, gausss, points, gt_discrete) in enumerate(self.dataloaders["train"]):
inputs = inputs.to(self.device)
gausss = gausss.to(self.device)
gd_count = np.array([len(p) for p in points], dtype=np.float32)
points = [p.to(self.device) for p in points]
gt_discrete = gt_discrete.to(self.device)
N = inputs.size(0)
for st, unlabel_data in enumerate(self.dataloaders_ul["train_ul"]):
inputs_ul = unlabel_data.to(self.device)
break
with torch.set_grad_enabled(True):
outputs_L, outputs_UL, outputs_normed, CLS_L, CLS_UL = self.model(inputs, inputs_ul)
outputs_L = outputs_L[0]
with torch.set_grad_enabled(False):
preds_UL = (outputs_UL[0][0] + outputs_UL[1][0] + outputs_UL[2][0])/3
# Compute counting loss.
count_loss = self.mae(outputs_L.sum(1).sum(1).sum(1),torch.from_numpy(gd_count).float().to(self.device))*self.args.reg
# Compute OT loss.
ot_loss, wd, ot_obj_value = self.ot_loss(outputs_normed, outputs_L, points)
ot_loss = ot_loss* self.args.ot
ot_obj_value = ot_obj_value* self.args.ot
gd_count_tensor = (torch.from_numpy(gd_count).float().to(self.device).unsqueeze(1).unsqueeze(2).unsqueeze(3))
gt_discrete_normed = gt_discrete / (gd_count_tensor + 1e-6)
tv_loss = (self.tvloss(outputs_normed, gt_discrete_normed).sum(1).sum(1).sum(1)*
torch.from_numpy(gd_count).float().to(self.device)).mean(0) * self.args.tv
epoch_ot_loss.update(ot_loss.item(), N)
epoch_ot_obj_value.update(ot_obj_value.item(), N)
epoch_wd.update(wd, N)
epoch_count_loss.update(count_loss.item(), N)
epoch_tv_loss.update(tv_loss.item(), N)
# Compute ranking loss.
rank_loss = self.rankloss(outputs_UL)*self.args.rl
epoch_rank_loss.update(rank_loss.item(), N)
# Compute multi level consistancy loss
consistency_loss = args.consistency * self.multiconloss(outputs_UL)
epoch_consistensy_loss.update(consistency_loss.item(), N)
# Compute consistency count
Con_cls_UL = (CLS_UL[0] + CLS_UL[1] + CLS_UL[2])/3
Con_cls_L = torch.from_numpy(gd_count).float().to(self.device)
count_loss_l = self.mae(torch.stack((CLS_L[0],CLS_L[1],CLS_L[2])), torch.stack((Con_cls_L, Con_cls_L, Con_cls_L)))
count_loss_ul = self.mae(torch.stack((CLS_UL[0],CLS_UL[1],CLS_UL[2])), torch.stack((Con_cls_UL, Con_cls_UL, Con_cls_UL)))
epoch_count_consistency_l.update(count_loss_l.item(), N)
epoch_count_consistency_ul.update(count_loss_ul.item(), N)
loss = count_loss + ot_loss + tv_loss + rank_loss + count_loss_l + count_loss_ul + consistency_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
pred_count = (torch.sum(outputs_L.view(N, -1),
dim=1).detach().cpu().numpy())
pred_err = pred_count - gd_count
epoch_loss.update(loss.item(), N)
epoch_mse.update(np.mean(pred_err * pred_err), N)
epoch_mae.update(np.mean(abs(pred_err)), N)
self.logger.info(
"Epoch {} Train, Loss: {:.2f}, Count Loss: {:.2f}, OT Loss: {:.2e}, TV Loss: {:.2e}, Rank Loss: {:.2f},"
"Consistensy Loss: {:.2f}, MSE: {:.2f}, MAE: {:.2f},LC Loss: {:.2f}, ULC Loss: {:.2f}, Cost {:.1f} sec".format(
self.epoch, epoch_loss.get_avg(), epoch_count_loss.get_avg(), epoch_ot_loss.get_avg(), epoch_tv_loss.get_avg(), epoch_rank_loss.get_avg(),
epoch_consistensy_loss.get_avg(), np.sqrt(epoch_mse.get_avg()), epoch_mae.get_avg(), epoch_count_consistency_l.get_avg(),
epoch_count_consistency_ul.get_avg(), time.time() - epoch_start))
model_state_dic = self.model.state_dict()
save_path = os.path.join(self.save_dir, "{}_ckpt.tar".format(self.epoch))
torch.save({"epoch": self.epoch, "optimizer_state_dict": self.optimizer.state_dict(),
"model_state_dict": model_state_dic}, save_path)
self.save_list.append(save_path)
def val_epoch(self):
args = self.args
epoch_start = time.time()
self.model.eval() # Set model to evaluate mode
epoch_res = []
for inputs, count, name, gauss_im in self.dataloaders["val"]:
with torch.no_grad():
inputs = inputs.to(self.device)
crop_imgs, crop_masks = [], []
b, c, h, w = inputs.size()
rh, rw = args.crop_size, args.crop_size
for i in range(0, h, rh):
gis, gie = max(min(h - rh, i), 0), min(h, i + rh)
for j in range(0, w, rw):
gjs, gje = max(min(w - rw, j), 0), min(w, j + rw)
crop_imgs.append(inputs[:, :, gis:gie, gjs:gje])
mask = torch.zeros([b, 1, h, w]).to(self.device)
mask[:, :, gis:gie, gjs:gje].fill_(1.0)
crop_masks.append(mask)
crop_imgs, crop_masks = map(
lambda x: torch.cat(x, dim=0), (crop_imgs, crop_masks))
crop_preds = []
nz, bz = crop_imgs.size(0), args.batch_size
for i in range(0, nz, bz):
gs, gt = i, min(nz, i + bz)
crop_pred, _ = self.model(crop_imgs[gs:gt])
crop_pred = crop_pred[0]
_, _, h1, w1 = crop_pred.size()
crop_pred = (F.interpolate(crop_pred, size=(h1 * 4, w1 * 4),
mode="bilinear", align_corners=True) / 16 )
crop_preds.append(crop_pred)
crop_preds = torch.cat(crop_preds, dim=0)
# splice them to the original size
idx = 0
pred_map = torch.zeros([b, 1, h, w]).to(self.device)
for i in range(0, h, rh):
gis, gie = max(min(h - rh, i), 0), min(h, i + rh)
for j in range(0, w, rw):
gjs, gje = max(min(w - rw, j), 0), min(w, j + rw)
pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx]
idx += 1
# for the overlapping area, compute average value
mask = crop_masks.sum(dim=0).unsqueeze(0)
outputs = pred_map / mask
res = count[0].item() - torch.sum(outputs).item()
epoch_res.append(res)
epoch_res = np.array(epoch_res)
mse = np.sqrt(np.mean(np.square(epoch_res)))
mae = np.mean(np.abs(epoch_res))
self.logger.info("Epoch {} Val, MSE: {:.2f}, MAE: {:.2f}, Cost {:.1f} sec".format(
self.epoch, mse, mae, time.time() - epoch_start ))
model_state_dic = self.model.state_dict()
print("Comaprison", mae, self.best_mae)
if mae < self.best_mae:
self.best_mse = mse
self.best_mae = mae
self.logger.info(
"save best mse {:.2f} mae {:.2f} model epoch {}".format(
self.best_mse, self.best_mae, self.epoch))
print("Saving best model at {} epoch".format(self.epoch))
model_path = os.path.join(
self.save_dir, "best_model_mae-{:.2f}_epoch-{}.pth".format(
self.best_mae, self.epoch))
torch.save(model_state_dic, model_path)
if __name__ == "__main__":
import torch
torch.backends.cudnn.benchmark = True
trainer = Trainer(args)
trainer.setup()
trainer.train()