Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) Facebook, Inc. and its affiliates. | |
import contextlib | |
import copy | |
import itertools | |
import logging | |
import numpy as np | |
import pickle | |
import random | |
from typing import Callable, Union | |
import torch | |
import torch.utils.data as data | |
from torch.utils.data.sampler import Sampler | |
from detectron2.utils.serialize import PicklableWrapper | |
__all__ = ["MapDataset", "DatasetFromList", "AspectRatioGroupedDataset", "ToIterableDataset"] | |
logger = logging.getLogger(__name__) | |
# copied from: https://docs.python.org/3/library/itertools.html#recipes | |
def _roundrobin(*iterables): | |
"roundrobin('ABC', 'D', 'EF') --> A D E B F C" | |
# Recipe credited to George Sakkis | |
num_active = len(iterables) | |
nexts = itertools.cycle(iter(it).__next__ for it in iterables) | |
while num_active: | |
try: | |
for next in nexts: | |
yield next() | |
except StopIteration: | |
# Remove the iterator we just exhausted from the cycle. | |
num_active -= 1 | |
nexts = itertools.cycle(itertools.islice(nexts, num_active)) | |
def _shard_iterator_dataloader_worker(iterable, chunk_size=1): | |
# Shard the iterable if we're currently inside pytorch dataloader worker. | |
worker_info = data.get_worker_info() | |
if worker_info is None or worker_info.num_workers == 1: | |
# do nothing | |
yield from iterable | |
else: | |
# worker0: 0, 1, ..., chunk_size-1, num_workers*chunk_size, num_workers*chunk_size+1, ... | |
# worker1: chunk_size, chunk_size+1, ... | |
# worker2: 2*chunk_size, 2*chunk_size+1, ... | |
# ... | |
yield from _roundrobin( | |
*[ | |
itertools.islice( | |
iterable, | |
worker_info.id * chunk_size + chunk_i, | |
None, | |
worker_info.num_workers * chunk_size, | |
) | |
for chunk_i in range(chunk_size) | |
] | |
) | |
class _MapIterableDataset(data.IterableDataset): | |
""" | |
Map a function over elements in an IterableDataset. | |
Similar to pytorch's MapIterDataPipe, but support filtering when map_func | |
returns None. | |
This class is not public-facing. Will be called by `MapDataset`. | |
""" | |
def __init__(self, dataset, map_func): | |
self._dataset = dataset | |
self._map_func = PicklableWrapper(map_func) # wrap so that a lambda will work | |
def __len__(self): | |
return len(self._dataset) | |
def __iter__(self): | |
for x in map(self._map_func, self._dataset): | |
if x is not None: | |
yield x | |
class MapDataset(data.Dataset): | |
""" | |
Map a function over the elements in a dataset. | |
""" | |
def __init__(self, dataset, map_func): | |
""" | |
Args: | |
dataset: a dataset where map function is applied. Can be either | |
map-style or iterable dataset. When given an iterable dataset, | |
the returned object will also be an iterable dataset. | |
map_func: a callable which maps the element in dataset. map_func can | |
return None to skip the data (e.g. in case of errors). | |
How None is handled depends on the style of `dataset`. | |
If `dataset` is map-style, it randomly tries other elements. | |
If `dataset` is iterable, it skips the data and tries the next. | |
""" | |
self._dataset = dataset | |
self._map_func = PicklableWrapper(map_func) # wrap so that a lambda will work | |
self._rng = random.Random(42) | |
self._fallback_candidates = set(range(len(dataset))) | |
def __new__(cls, dataset, map_func): | |
is_iterable = isinstance(dataset, data.IterableDataset) | |
if is_iterable: | |
return _MapIterableDataset(dataset, map_func) | |
else: | |
return super().__new__(cls) | |
def __getnewargs__(self): | |
return self._dataset, self._map_func | |
def __len__(self): | |
return len(self._dataset) | |
def __getitem__(self, idx): | |
retry_count = 0 | |
cur_idx = int(idx) | |
while True: | |
data = self._map_func(self._dataset[cur_idx]) | |
if data is not None: | |
self._fallback_candidates.add(cur_idx) | |
return data | |
# _map_func fails for this idx, use a random new index from the pool | |
retry_count += 1 | |
self._fallback_candidates.discard(cur_idx) | |
cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0] | |
if retry_count >= 3: | |
logger = logging.getLogger(__name__) | |
logger.warning( | |
"Failed to apply `_map_func` for idx: {}, retry count: {}".format( | |
idx, retry_count | |
) | |
) | |
class _TorchSerializedList: | |
""" | |
A list-like object whose items are serialized and stored in a torch tensor. When | |
launching a process that uses TorchSerializedList with "fork" start method, | |
the subprocess can read the same buffer without triggering copy-on-access. When | |
launching a process that uses TorchSerializedList with "spawn/forkserver" start | |
method, the list will be pickled by a special ForkingPickler registered by PyTorch | |
that moves data to shared memory. In both cases, this allows parent and child | |
processes to share RAM for the list data, hence avoids the issue in | |
https://github.com/pytorch/pytorch/issues/13246. | |
See also https://ppwwyyxx.com/blog/2022/Demystify-RAM-Usage-in-Multiprocess-DataLoader/ | |
on how it works. | |
""" | |
def __init__(self, lst: list): | |
self._lst = lst | |
def _serialize(data): | |
buffer = pickle.dumps(data, protocol=-1) | |
return np.frombuffer(buffer, dtype=np.uint8) | |
logger.info( | |
"Serializing {} elements to byte tensors and concatenating them all ...".format( | |
len(self._lst) | |
) | |
) | |
self._lst = [_serialize(x) for x in self._lst] | |
self._addr = np.asarray([len(x) for x in self._lst], dtype=np.int64) | |
self._addr = torch.from_numpy(np.cumsum(self._addr)) | |
self._lst = torch.from_numpy(np.concatenate(self._lst)) | |
logger.info("Serialized dataset takes {:.2f} MiB".format(len(self._lst) / 1024**2)) | |
def __len__(self): | |
return len(self._addr) | |
def __getitem__(self, idx): | |
start_addr = 0 if idx == 0 else self._addr[idx - 1].item() | |
end_addr = self._addr[idx].item() | |
bytes = memoryview(self._lst[start_addr:end_addr].numpy()) | |
# @lint-ignore PYTHONPICKLEISBAD | |
return pickle.loads(bytes) | |
_DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = _TorchSerializedList | |
def set_default_dataset_from_list_serialize_method(new): | |
""" | |
Context manager for using custom serialize function when creating DatasetFromList | |
""" | |
global _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD | |
orig = _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD | |
_DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = new | |
yield | |
_DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD = orig | |
class DatasetFromList(data.Dataset): | |
""" | |
Wrap a list to a torch Dataset. It produces elements of the list as data. | |
""" | |
def __init__( | |
self, | |
lst: list, | |
copy: bool = True, | |
serialize: Union[bool, Callable] = True, | |
): | |
""" | |
Args: | |
lst (list): a list which contains elements to produce. | |
copy (bool): whether to deepcopy the element when producing it, | |
so that the result can be modified in place without affecting the | |
source in the list. | |
serialize (bool or callable): whether to serialize the stroage to other | |
backend. If `True`, the default serialize method will be used, if given | |
a callable, the callable will be used as serialize method. | |
""" | |
self._lst = lst | |
self._copy = copy | |
if not isinstance(serialize, (bool, Callable)): | |
raise TypeError(f"Unsupported type for argument `serailzie`: {serialize}") | |
self._serialize = serialize is not False | |
if self._serialize: | |
serialize_method = ( | |
serialize | |
if isinstance(serialize, Callable) | |
else _DEFAULT_DATASET_FROM_LIST_SERIALIZE_METHOD | |
) | |
logger.info(f"Serializing the dataset using: {serialize_method}") | |
self._lst = serialize_method(self._lst) | |
def __len__(self): | |
return len(self._lst) | |
def __getitem__(self, idx): | |
if self._copy and not self._serialize: | |
return copy.deepcopy(self._lst[idx]) | |
else: | |
return self._lst[idx] | |
class ToIterableDataset(data.IterableDataset): | |
""" | |
Convert an old indices-based (also called map-style) dataset | |
to an iterable-style dataset. | |
""" | |
def __init__( | |
self, | |
dataset: data.Dataset, | |
sampler: Sampler, | |
shard_sampler: bool = True, | |
shard_chunk_size: int = 1, | |
): | |
""" | |
Args: | |
dataset: an old-style dataset with ``__getitem__`` | |
sampler: a cheap iterable that produces indices to be applied on ``dataset``. | |
shard_sampler: whether to shard the sampler based on the current pytorch data loader | |
worker id. When an IterableDataset is forked by pytorch's DataLoader into multiple | |
workers, it is responsible for sharding its data based on worker id so that workers | |
don't produce identical data. | |
Most samplers (like our TrainingSampler) do not shard based on dataloader worker id | |
and this argument should be set to True. But certain samplers may be already | |
sharded, in that case this argument should be set to False. | |
shard_chunk_size: when sharding the sampler, each worker will | |
""" | |
assert not isinstance(dataset, data.IterableDataset), dataset | |
assert isinstance(sampler, Sampler), sampler | |
self.dataset = dataset | |
self.sampler = sampler | |
self.shard_sampler = shard_sampler | |
self.shard_chunk_size = shard_chunk_size | |
def __iter__(self): | |
if not self.shard_sampler: | |
sampler = self.sampler | |
else: | |
# With map-style dataset, `DataLoader(dataset, sampler)` runs the | |
# sampler in main process only. But `DataLoader(ToIterableDataset(dataset, sampler))` | |
# will run sampler in every of the N worker. So we should only keep 1/N of the ids on | |
# each worker. The assumption is that sampler is cheap to iterate so it's fine to | |
# discard ids in workers. | |
sampler = _shard_iterator_dataloader_worker(self.sampler, self.shard_chunk_size) | |
for idx in sampler: | |
yield self.dataset[idx] | |
def __len__(self): | |
return len(self.sampler) | |
class AspectRatioGroupedDataset(data.IterableDataset): | |
""" | |
Batch data that have similar aspect ratio together. | |
In this implementation, images whose aspect ratio < (or >) 1 will | |
be batched together. | |
This improves training speed because the images then need less padding | |
to form a batch. | |
It assumes the underlying dataset produces dicts with "width" and "height" keys. | |
It will then produce a list of original dicts with length = batch_size, | |
all with similar aspect ratios. | |
""" | |
def __init__(self, dataset, batch_size): | |
""" | |
Args: | |
dataset: an iterable. Each element must be a dict with keys | |
"width" and "height", which will be used to batch data. | |
batch_size (int): | |
""" | |
self.dataset = dataset | |
self.batch_size = batch_size | |
self._buckets = [[] for _ in range(2)] | |
# Hard-coded two aspect ratio groups: w > h and w < h. | |
# Can add support for more aspect ratio groups, but doesn't seem useful | |
def __iter__(self): | |
for d in self.dataset: | |
w, h = d["width"], d["height"] | |
bucket_id = 0 if w > h else 1 | |
bucket = self._buckets[bucket_id] | |
bucket.append(d) | |
if len(bucket) == self.batch_size: | |
data = bucket[:] | |
# Clear bucket first, because code after yield is not | |
# guaranteed to execute | |
del bucket[:] | |
yield data | |