Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) Facebook, Inc. and its affiliates. | |
from typing import Optional | |
from torch import nn | |
from detectron2.config import CfgNode | |
from .cse.embedder import Embedder | |
from .filter import DensePoseDataFilter | |
def build_densepose_predictor(cfg: CfgNode, input_channels: int): | |
""" | |
Create an instance of DensePose predictor based on configuration options. | |
Args: | |
cfg (CfgNode): configuration options | |
input_channels (int): input tensor size along the channel dimension | |
Return: | |
An instance of DensePose predictor | |
""" | |
from .predictors import DENSEPOSE_PREDICTOR_REGISTRY | |
predictor_name = cfg.MODEL.ROI_DENSEPOSE_HEAD.PREDICTOR_NAME | |
return DENSEPOSE_PREDICTOR_REGISTRY.get(predictor_name)(cfg, input_channels) | |
def build_densepose_data_filter(cfg: CfgNode): | |
""" | |
Build DensePose data filter which selects data for training | |
Args: | |
cfg (CfgNode): configuration options | |
Return: | |
Callable: list(Tensor), list(Instances) -> list(Tensor), list(Instances) | |
An instance of DensePose filter, which takes feature tensors and proposals | |
as an input and returns filtered features and proposals | |
""" | |
dp_filter = DensePoseDataFilter(cfg) | |
return dp_filter | |
def build_densepose_head(cfg: CfgNode, input_channels: int): | |
""" | |
Build DensePose head based on configurations options | |
Args: | |
cfg (CfgNode): configuration options | |
input_channels (int): input tensor size along the channel dimension | |
Return: | |
An instance of DensePose head | |
""" | |
from .roi_heads.registry import ROI_DENSEPOSE_HEAD_REGISTRY | |
head_name = cfg.MODEL.ROI_DENSEPOSE_HEAD.NAME | |
return ROI_DENSEPOSE_HEAD_REGISTRY.get(head_name)(cfg, input_channels) | |
def build_densepose_losses(cfg: CfgNode): | |
""" | |
Build DensePose loss based on configurations options | |
Args: | |
cfg (CfgNode): configuration options | |
Return: | |
An instance of DensePose loss | |
""" | |
from .losses import DENSEPOSE_LOSS_REGISTRY | |
loss_name = cfg.MODEL.ROI_DENSEPOSE_HEAD.LOSS_NAME | |
return DENSEPOSE_LOSS_REGISTRY.get(loss_name)(cfg) | |
def build_densepose_embedder(cfg: CfgNode) -> Optional[nn.Module]: | |
""" | |
Build embedder used to embed mesh vertices into an embedding space. | |
Embedder contains sub-embedders, one for each mesh ID. | |
Args: | |
cfg (cfgNode): configuration options | |
Return: | |
Embedding module | |
""" | |
if cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDERS: | |
return Embedder(cfg) | |
return None | |