Spaces:
Running
on
L40S
Running
on
L40S
# -*- coding: utf-8 -*- | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
import datetime | |
import itertools | |
import logging | |
import math | |
import operator | |
import os | |
import tempfile | |
import time | |
import warnings | |
from collections import Counter | |
import torch | |
from fvcore.common.checkpoint import Checkpointer | |
from fvcore.common.checkpoint import PeriodicCheckpointer as _PeriodicCheckpointer | |
from fvcore.common.param_scheduler import ParamScheduler | |
from fvcore.common.timer import Timer | |
from fvcore.nn.precise_bn import get_bn_modules, update_bn_stats | |
import detectron2.utils.comm as comm | |
from detectron2.evaluation.testing import flatten_results_dict | |
from detectron2.solver import LRMultiplier | |
from detectron2.solver import LRScheduler as _LRScheduler | |
from detectron2.utils.events import EventStorage, EventWriter | |
from detectron2.utils.file_io import PathManager | |
from .train_loop import HookBase | |
__all__ = [ | |
"CallbackHook", | |
"IterationTimer", | |
"PeriodicWriter", | |
"PeriodicCheckpointer", | |
"BestCheckpointer", | |
"LRScheduler", | |
"AutogradProfiler", | |
"EvalHook", | |
"PreciseBN", | |
"TorchProfiler", | |
"TorchMemoryStats", | |
] | |
""" | |
Implement some common hooks. | |
""" | |
class CallbackHook(HookBase): | |
""" | |
Create a hook using callback functions provided by the user. | |
""" | |
def __init__(self, *, before_train=None, after_train=None, before_step=None, after_step=None): | |
""" | |
Each argument is a function that takes one argument: the trainer. | |
""" | |
self._before_train = before_train | |
self._before_step = before_step | |
self._after_step = after_step | |
self._after_train = after_train | |
def before_train(self): | |
if self._before_train: | |
self._before_train(self.trainer) | |
def after_train(self): | |
if self._after_train: | |
self._after_train(self.trainer) | |
# The functions may be closures that hold reference to the trainer | |
# Therefore, delete them to avoid circular reference. | |
del self._before_train, self._after_train | |
del self._before_step, self._after_step | |
def before_step(self): | |
if self._before_step: | |
self._before_step(self.trainer) | |
def after_step(self): | |
if self._after_step: | |
self._after_step(self.trainer) | |
class IterationTimer(HookBase): | |
""" | |
Track the time spent for each iteration (each run_step call in the trainer). | |
Print a summary in the end of training. | |
This hook uses the time between the call to its :meth:`before_step` | |
and :meth:`after_step` methods. | |
Under the convention that :meth:`before_step` of all hooks should only | |
take negligible amount of time, the :class:`IterationTimer` hook should be | |
placed at the beginning of the list of hooks to obtain accurate timing. | |
""" | |
def __init__(self, warmup_iter=3): | |
""" | |
Args: | |
warmup_iter (int): the number of iterations at the beginning to exclude | |
from timing. | |
""" | |
self._warmup_iter = warmup_iter | |
self._step_timer = Timer() | |
self._start_time = time.perf_counter() | |
self._total_timer = Timer() | |
def before_train(self): | |
self._start_time = time.perf_counter() | |
self._total_timer.reset() | |
self._total_timer.pause() | |
def after_train(self): | |
logger = logging.getLogger(__name__) | |
total_time = time.perf_counter() - self._start_time | |
total_time_minus_hooks = self._total_timer.seconds() | |
hook_time = total_time - total_time_minus_hooks | |
num_iter = self.trainer.storage.iter + 1 - self.trainer.start_iter - self._warmup_iter | |
if num_iter > 0 and total_time_minus_hooks > 0: | |
# Speed is meaningful only after warmup | |
# NOTE this format is parsed by grep in some scripts | |
logger.info( | |
"Overall training speed: {} iterations in {} ({:.4f} s / it)".format( | |
num_iter, | |
str(datetime.timedelta(seconds=int(total_time_minus_hooks))), | |
total_time_minus_hooks / num_iter, | |
) | |
) | |
logger.info( | |
"Total training time: {} ({} on hooks)".format( | |
str(datetime.timedelta(seconds=int(total_time))), | |
str(datetime.timedelta(seconds=int(hook_time))), | |
) | |
) | |
def before_step(self): | |
self._step_timer.reset() | |
self._total_timer.resume() | |
def after_step(self): | |
# +1 because we're in after_step, the current step is done | |
# but not yet counted | |
iter_done = self.trainer.storage.iter - self.trainer.start_iter + 1 | |
if iter_done >= self._warmup_iter: | |
sec = self._step_timer.seconds() | |
self.trainer.storage.put_scalars(time=sec) | |
else: | |
self._start_time = time.perf_counter() | |
self._total_timer.reset() | |
self._total_timer.pause() | |
class PeriodicWriter(HookBase): | |
""" | |
Write events to EventStorage (by calling ``writer.write()``) periodically. | |
It is executed every ``period`` iterations and after the last iteration. | |
Note that ``period`` does not affect how data is smoothed by each writer. | |
""" | |
def __init__(self, writers, period=20): | |
""" | |
Args: | |
writers (list[EventWriter]): a list of EventWriter objects | |
period (int): | |
""" | |
self._writers = writers | |
for w in writers: | |
assert isinstance(w, EventWriter), w | |
self._period = period | |
def after_step(self): | |
if (self.trainer.iter + 1) % self._period == 0 or ( | |
self.trainer.iter == self.trainer.max_iter - 1 | |
): | |
for writer in self._writers: | |
writer.write() | |
def after_train(self): | |
for writer in self._writers: | |
# If any new data is found (e.g. produced by other after_train), | |
# write them before closing | |
writer.write() | |
writer.close() | |
class PeriodicCheckpointer(_PeriodicCheckpointer, HookBase): | |
""" | |
Same as :class:`detectron2.checkpoint.PeriodicCheckpointer`, but as a hook. | |
Note that when used as a hook, | |
it is unable to save additional data other than what's defined | |
by the given `checkpointer`. | |
It is executed every ``period`` iterations and after the last iteration. | |
""" | |
def before_train(self): | |
self.max_iter = self.trainer.max_iter | |
def after_step(self): | |
# No way to use **kwargs | |
self.step(self.trainer.iter) | |
class BestCheckpointer(HookBase): | |
""" | |
Checkpoints best weights based off given metric. | |
This hook should be used in conjunction to and executed after the hook | |
that produces the metric, e.g. `EvalHook`. | |
""" | |
def __init__( | |
self, | |
eval_period: int, | |
checkpointer: Checkpointer, | |
val_metric: str, | |
mode: str = "max", | |
file_prefix: str = "model_best", | |
) -> None: | |
""" | |
Args: | |
eval_period (int): the period `EvalHook` is set to run. | |
checkpointer: the checkpointer object used to save checkpoints. | |
val_metric (str): validation metric to track for best checkpoint, e.g. "bbox/AP50" | |
mode (str): one of {'max', 'min'}. controls whether the chosen val metric should be | |
maximized or minimized, e.g. for "bbox/AP50" it should be "max" | |
file_prefix (str): the prefix of checkpoint's filename, defaults to "model_best" | |
""" | |
self._logger = logging.getLogger(__name__) | |
self._period = eval_period | |
self._val_metric = val_metric | |
assert mode in [ | |
"max", | |
"min", | |
], f'Mode "{mode}" to `BestCheckpointer` is unknown. It should be one of {"max", "min"}.' | |
if mode == "max": | |
self._compare = operator.gt | |
else: | |
self._compare = operator.lt | |
self._checkpointer = checkpointer | |
self._file_prefix = file_prefix | |
self.best_metric = None | |
self.best_iter = None | |
def _update_best(self, val, iteration): | |
if math.isnan(val) or math.isinf(val): | |
return False | |
self.best_metric = val | |
self.best_iter = iteration | |
return True | |
def _best_checking(self): | |
metric_tuple = self.trainer.storage.latest().get(self._val_metric) | |
if metric_tuple is None: | |
self._logger.warning( | |
f"Given val metric {self._val_metric} does not seem to be computed/stored." | |
"Will not be checkpointing based on it." | |
) | |
return | |
else: | |
latest_metric, metric_iter = metric_tuple | |
if self.best_metric is None: | |
if self._update_best(latest_metric, metric_iter): | |
additional_state = {"iteration": metric_iter} | |
self._checkpointer.save(f"{self._file_prefix}", **additional_state) | |
self._logger.info( | |
f"Saved first model at {self.best_metric:0.5f} @ {self.best_iter} steps" | |
) | |
elif self._compare(latest_metric, self.best_metric): | |
additional_state = {"iteration": metric_iter} | |
self._checkpointer.save(f"{self._file_prefix}", **additional_state) | |
self._logger.info( | |
f"Saved best model as latest eval score for {self._val_metric} is " | |
f"{latest_metric:0.5f}, better than last best score " | |
f"{self.best_metric:0.5f} @ iteration {self.best_iter}." | |
) | |
self._update_best(latest_metric, metric_iter) | |
else: | |
self._logger.info( | |
f"Not saving as latest eval score for {self._val_metric} is {latest_metric:0.5f}, " | |
f"not better than best score {self.best_metric:0.5f} @ iteration {self.best_iter}." | |
) | |
def after_step(self): | |
# same conditions as `EvalHook` | |
next_iter = self.trainer.iter + 1 | |
if ( | |
self._period > 0 | |
and next_iter % self._period == 0 | |
and next_iter != self.trainer.max_iter | |
): | |
self._best_checking() | |
def after_train(self): | |
# same conditions as `EvalHook` | |
if self.trainer.iter + 1 >= self.trainer.max_iter: | |
self._best_checking() | |
class LRScheduler(HookBase): | |
""" | |
A hook which executes a torch builtin LR scheduler and summarizes the LR. | |
It is executed after every iteration. | |
""" | |
def __init__(self, optimizer=None, scheduler=None): | |
""" | |
Args: | |
optimizer (torch.optim.Optimizer): | |
scheduler (torch.optim.LRScheduler or fvcore.common.param_scheduler.ParamScheduler): | |
if a :class:`ParamScheduler` object, it defines the multiplier over the base LR | |
in the optimizer. | |
If any argument is not given, will try to obtain it from the trainer. | |
""" | |
self._optimizer = optimizer | |
self._scheduler = scheduler | |
def before_train(self): | |
self._optimizer = self._optimizer or self.trainer.optimizer | |
if isinstance(self.scheduler, ParamScheduler): | |
self._scheduler = LRMultiplier( | |
self._optimizer, | |
self.scheduler, | |
self.trainer.max_iter, | |
last_iter=self.trainer.iter - 1, | |
) | |
self._best_param_group_id = LRScheduler.get_best_param_group_id(self._optimizer) | |
def get_best_param_group_id(optimizer): | |
# NOTE: some heuristics on what LR to summarize | |
# summarize the param group with most parameters | |
largest_group = max(len(g["params"]) for g in optimizer.param_groups) | |
if largest_group == 1: | |
# If all groups have one parameter, | |
# then find the most common initial LR, and use it for summary | |
lr_count = Counter([g["lr"] for g in optimizer.param_groups]) | |
lr = lr_count.most_common()[0][0] | |
for i, g in enumerate(optimizer.param_groups): | |
if g["lr"] == lr: | |
return i | |
else: | |
for i, g in enumerate(optimizer.param_groups): | |
if len(g["params"]) == largest_group: | |
return i | |
def after_step(self): | |
lr = self._optimizer.param_groups[self._best_param_group_id]["lr"] | |
self.trainer.storage.put_scalar("lr", lr, smoothing_hint=False) | |
self.scheduler.step() | |
def scheduler(self): | |
return self._scheduler or self.trainer.scheduler | |
def state_dict(self): | |
if isinstance(self.scheduler, _LRScheduler): | |
return self.scheduler.state_dict() | |
return {} | |
def load_state_dict(self, state_dict): | |
if isinstance(self.scheduler, _LRScheduler): | |
logger = logging.getLogger(__name__) | |
logger.info("Loading scheduler from state_dict ...") | |
self.scheduler.load_state_dict(state_dict) | |
class TorchProfiler(HookBase): | |
""" | |
A hook which runs `torch.profiler.profile`. | |
Examples: | |
:: | |
hooks.TorchProfiler( | |
lambda trainer: 10 < trainer.iter < 20, self.cfg.OUTPUT_DIR | |
) | |
The above example will run the profiler for iteration 10~20 and dump | |
results to ``OUTPUT_DIR``. We did not profile the first few iterations | |
because they are typically slower than the rest. | |
The result files can be loaded in the ``chrome://tracing`` page in chrome browser, | |
and the tensorboard visualizations can be visualized using | |
``tensorboard --logdir OUTPUT_DIR/log`` | |
""" | |
def __init__(self, enable_predicate, output_dir, *, activities=None, save_tensorboard=True): | |
""" | |
Args: | |
enable_predicate (callable[trainer -> bool]): a function which takes a trainer, | |
and returns whether to enable the profiler. | |
It will be called once every step, and can be used to select which steps to profile. | |
output_dir (str): the output directory to dump tracing files. | |
activities (iterable): same as in `torch.profiler.profile`. | |
save_tensorboard (bool): whether to save tensorboard visualizations at (output_dir)/log/ | |
""" | |
self._enable_predicate = enable_predicate | |
self._activities = activities | |
self._output_dir = output_dir | |
self._save_tensorboard = save_tensorboard | |
def before_step(self): | |
if self._enable_predicate(self.trainer): | |
if self._save_tensorboard: | |
on_trace_ready = torch.profiler.tensorboard_trace_handler( | |
os.path.join( | |
self._output_dir, | |
"log", | |
"profiler-tensorboard-iter{}".format(self.trainer.iter), | |
), | |
f"worker{comm.get_rank()}", | |
) | |
else: | |
on_trace_ready = None | |
self._profiler = torch.profiler.profile( | |
activities=self._activities, | |
on_trace_ready=on_trace_ready, | |
record_shapes=True, | |
profile_memory=True, | |
with_stack=True, | |
with_flops=True, | |
) | |
self._profiler.__enter__() | |
else: | |
self._profiler = None | |
def after_step(self): | |
if self._profiler is None: | |
return | |
self._profiler.__exit__(None, None, None) | |
if not self._save_tensorboard: | |
PathManager.mkdirs(self._output_dir) | |
out_file = os.path.join( | |
self._output_dir, "profiler-trace-iter{}.json".format(self.trainer.iter) | |
) | |
if "://" not in out_file: | |
self._profiler.export_chrome_trace(out_file) | |
else: | |
# Support non-posix filesystems | |
with tempfile.TemporaryDirectory(prefix="detectron2_profiler") as d: | |
tmp_file = os.path.join(d, "tmp.json") | |
self._profiler.export_chrome_trace(tmp_file) | |
with open(tmp_file) as f: | |
content = f.read() | |
with PathManager.open(out_file, "w") as f: | |
f.write(content) | |
class AutogradProfiler(TorchProfiler): | |
""" | |
A hook which runs `torch.autograd.profiler.profile`. | |
Examples: | |
:: | |
hooks.AutogradProfiler( | |
lambda trainer: 10 < trainer.iter < 20, self.cfg.OUTPUT_DIR | |
) | |
The above example will run the profiler for iteration 10~20 and dump | |
results to ``OUTPUT_DIR``. We did not profile the first few iterations | |
because they are typically slower than the rest. | |
The result files can be loaded in the ``chrome://tracing`` page in chrome browser. | |
Note: | |
When used together with NCCL on older version of GPUs, | |
autograd profiler may cause deadlock because it unnecessarily allocates | |
memory on every device it sees. The memory management calls, if | |
interleaved with NCCL calls, lead to deadlock on GPUs that do not | |
support ``cudaLaunchCooperativeKernelMultiDevice``. | |
""" | |
def __init__(self, enable_predicate, output_dir, *, use_cuda=True): | |
""" | |
Args: | |
enable_predicate (callable[trainer -> bool]): a function which takes a trainer, | |
and returns whether to enable the profiler. | |
It will be called once every step, and can be used to select which steps to profile. | |
output_dir (str): the output directory to dump tracing files. | |
use_cuda (bool): same as in `torch.autograd.profiler.profile`. | |
""" | |
warnings.warn("AutogradProfiler has been deprecated in favor of TorchProfiler.") | |
self._enable_predicate = enable_predicate | |
self._use_cuda = use_cuda | |
self._output_dir = output_dir | |
def before_step(self): | |
if self._enable_predicate(self.trainer): | |
self._profiler = torch.autograd.profiler.profile(use_cuda=self._use_cuda) | |
self._profiler.__enter__() | |
else: | |
self._profiler = None | |
class EvalHook(HookBase): | |
""" | |
Run an evaluation function periodically, and at the end of training. | |
It is executed every ``eval_period`` iterations and after the last iteration. | |
""" | |
def __init__(self, eval_period, eval_function, eval_after_train=True): | |
""" | |
Args: | |
eval_period (int): the period to run `eval_function`. Set to 0 to | |
not evaluate periodically (but still evaluate after the last iteration | |
if `eval_after_train` is True). | |
eval_function (callable): a function which takes no arguments, and | |
returns a nested dict of evaluation metrics. | |
eval_after_train (bool): whether to evaluate after the last iteration | |
Note: | |
This hook must be enabled in all or none workers. | |
If you would like only certain workers to perform evaluation, | |
give other workers a no-op function (`eval_function=lambda: None`). | |
""" | |
self._period = eval_period | |
self._func = eval_function | |
self._eval_after_train = eval_after_train | |
def _do_eval(self): | |
results = self._func() | |
if results: | |
assert isinstance( | |
results, dict | |
), "Eval function must return a dict. Got {} instead.".format(results) | |
flattened_results = flatten_results_dict(results) | |
for k, v in flattened_results.items(): | |
try: | |
v = float(v) | |
except Exception as e: | |
raise ValueError( | |
"[EvalHook] eval_function should return a nested dict of float. " | |
"Got '{}: {}' instead.".format(k, v) | |
) from e | |
self.trainer.storage.put_scalars(**flattened_results, smoothing_hint=False) | |
# Evaluation may take different time among workers. | |
# A barrier make them start the next iteration together. | |
comm.synchronize() | |
def after_step(self): | |
next_iter = self.trainer.iter + 1 | |
if self._period > 0 and next_iter % self._period == 0: | |
# do the last eval in after_train | |
if next_iter != self.trainer.max_iter: | |
self._do_eval() | |
def after_train(self): | |
# This condition is to prevent the eval from running after a failed training | |
if self._eval_after_train and self.trainer.iter + 1 >= self.trainer.max_iter: | |
self._do_eval() | |
# func is likely a closure that holds reference to the trainer | |
# therefore we clean it to avoid circular reference in the end | |
del self._func | |
class PreciseBN(HookBase): | |
""" | |
The standard implementation of BatchNorm uses EMA in inference, which is | |
sometimes suboptimal. | |
This class computes the true average of statistics rather than the moving average, | |
and put true averages to every BN layer in the given model. | |
It is executed every ``period`` iterations and after the last iteration. | |
""" | |
def __init__(self, period, model, data_loader, num_iter): | |
""" | |
Args: | |
period (int): the period this hook is run, or 0 to not run during training. | |
The hook will always run in the end of training. | |
model (nn.Module): a module whose all BN layers in training mode will be | |
updated by precise BN. | |
Note that user is responsible for ensuring the BN layers to be | |
updated are in training mode when this hook is triggered. | |
data_loader (iterable): it will produce data to be run by `model(data)`. | |
num_iter (int): number of iterations used to compute the precise | |
statistics. | |
""" | |
self._logger = logging.getLogger(__name__) | |
if len(get_bn_modules(model)) == 0: | |
self._logger.info( | |
"PreciseBN is disabled because model does not contain BN layers in training mode." | |
) | |
self._disabled = True | |
return | |
self._model = model | |
self._data_loader = data_loader | |
self._num_iter = num_iter | |
self._period = period | |
self._disabled = False | |
self._data_iter = None | |
def after_step(self): | |
next_iter = self.trainer.iter + 1 | |
is_final = next_iter == self.trainer.max_iter | |
if is_final or (self._period > 0 and next_iter % self._period == 0): | |
self.update_stats() | |
def update_stats(self): | |
""" | |
Update the model with precise statistics. Users can manually call this method. | |
""" | |
if self._disabled: | |
return | |
if self._data_iter is None: | |
self._data_iter = iter(self._data_loader) | |
def data_loader(): | |
for num_iter in itertools.count(1): | |
if num_iter % 100 == 0: | |
self._logger.info( | |
"Running precise-BN ... {}/{} iterations.".format(num_iter, self._num_iter) | |
) | |
# This way we can reuse the same iterator | |
yield next(self._data_iter) | |
with EventStorage(): # capture events in a new storage to discard them | |
self._logger.info( | |
"Running precise-BN for {} iterations... ".format(self._num_iter) | |
+ "Note that this could produce different statistics every time." | |
) | |
update_bn_stats(self._model, data_loader(), self._num_iter) | |
class TorchMemoryStats(HookBase): | |
""" | |
Writes pytorch's cuda memory statistics periodically. | |
""" | |
def __init__(self, period=20, max_runs=10): | |
""" | |
Args: | |
period (int): Output stats each 'period' iterations | |
max_runs (int): Stop the logging after 'max_runs' | |
""" | |
self._logger = logging.getLogger(__name__) | |
self._period = period | |
self._max_runs = max_runs | |
self._runs = 0 | |
def after_step(self): | |
if self._runs > self._max_runs: | |
return | |
if (self.trainer.iter + 1) % self._period == 0 or ( | |
self.trainer.iter == self.trainer.max_iter - 1 | |
): | |
if torch.cuda.is_available(): | |
max_reserved_mb = torch.cuda.max_memory_reserved() / 1024.0 / 1024.0 | |
reserved_mb = torch.cuda.memory_reserved() / 1024.0 / 1024.0 | |
max_allocated_mb = torch.cuda.max_memory_allocated() / 1024.0 / 1024.0 | |
allocated_mb = torch.cuda.memory_allocated() / 1024.0 / 1024.0 | |
self._logger.info( | |
( | |
" iter: {} " | |
" max_reserved_mem: {:.0f}MB " | |
" reserved_mem: {:.0f}MB " | |
" max_allocated_mem: {:.0f}MB " | |
" allocated_mem: {:.0f}MB " | |
).format( | |
self.trainer.iter, | |
max_reserved_mb, | |
reserved_mb, | |
max_allocated_mb, | |
allocated_mb, | |
) | |
) | |
self._runs += 1 | |
if self._runs == self._max_runs: | |
mem_summary = torch.cuda.memory_summary() | |
self._logger.info("\n" + mem_summary) | |
torch.cuda.reset_peak_memory_stats() | |