Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
from dataclasses import dataclass | |
from typing import Any, Optional | |
import torch | |
from detectron2.structures import BoxMode, Instances | |
from .utils import AnnotationsAccumulator | |
class PackedCseAnnotations: | |
x_gt: torch.Tensor | |
y_gt: torch.Tensor | |
coarse_segm_gt: Optional[torch.Tensor] | |
vertex_mesh_ids_gt: torch.Tensor | |
vertex_ids_gt: torch.Tensor | |
bbox_xywh_gt: torch.Tensor | |
bbox_xywh_est: torch.Tensor | |
point_bbox_with_dp_indices: torch.Tensor | |
point_bbox_indices: torch.Tensor | |
bbox_indices: torch.Tensor | |
class CseAnnotationsAccumulator(AnnotationsAccumulator): | |
""" | |
Accumulates annotations by batches that correspond to objects detected on | |
individual images. Can pack them together into single tensors. | |
""" | |
def __init__(self): | |
self.x_gt = [] | |
self.y_gt = [] | |
self.s_gt = [] | |
self.vertex_mesh_ids_gt = [] | |
self.vertex_ids_gt = [] | |
self.bbox_xywh_gt = [] | |
self.bbox_xywh_est = [] | |
self.point_bbox_with_dp_indices = [] | |
self.point_bbox_indices = [] | |
self.bbox_indices = [] | |
self.nxt_bbox_with_dp_index = 0 | |
self.nxt_bbox_index = 0 | |
def accumulate(self, instances_one_image: Instances): | |
""" | |
Accumulate instances data for one image | |
Args: | |
instances_one_image (Instances): instances data to accumulate | |
""" | |
boxes_xywh_est = BoxMode.convert( | |
instances_one_image.proposal_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS | |
) | |
boxes_xywh_gt = BoxMode.convert( | |
instances_one_image.gt_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS | |
) | |
n_matches = len(boxes_xywh_gt) | |
assert n_matches == len( | |
boxes_xywh_est | |
), f"Got {len(boxes_xywh_est)} proposal boxes and {len(boxes_xywh_gt)} GT boxes" | |
if not n_matches: | |
# no detection - GT matches | |
return | |
if ( | |
not hasattr(instances_one_image, "gt_densepose") | |
or instances_one_image.gt_densepose is None | |
): | |
# no densepose GT for the detections, just increase the bbox index | |
self.nxt_bbox_index += n_matches | |
return | |
for box_xywh_est, box_xywh_gt, dp_gt in zip( | |
boxes_xywh_est, boxes_xywh_gt, instances_one_image.gt_densepose | |
): | |
if (dp_gt is not None) and (len(dp_gt.x) > 0): | |
# pyre-fixme[6]: For 1st argument expected `Tensor` but got `float`. | |
# pyre-fixme[6]: For 2nd argument expected `Tensor` but got `float`. | |
self._do_accumulate(box_xywh_gt, box_xywh_est, dp_gt) | |
self.nxt_bbox_index += 1 | |
def _do_accumulate(self, box_xywh_gt: torch.Tensor, box_xywh_est: torch.Tensor, dp_gt: Any): | |
""" | |
Accumulate instances data for one image, given that the data is not empty | |
Args: | |
box_xywh_gt (tensor): GT bounding box | |
box_xywh_est (tensor): estimated bounding box | |
dp_gt: GT densepose data with the following attributes: | |
- x: normalized X coordinates | |
- y: normalized Y coordinates | |
- segm: tensor of size [S, S] with coarse segmentation | |
- | |
""" | |
self.x_gt.append(dp_gt.x) | |
self.y_gt.append(dp_gt.y) | |
if hasattr(dp_gt, "segm"): | |
self.s_gt.append(dp_gt.segm.unsqueeze(0)) | |
self.vertex_ids_gt.append(dp_gt.vertex_ids) | |
self.vertex_mesh_ids_gt.append(torch.full_like(dp_gt.vertex_ids, dp_gt.mesh_id)) | |
self.bbox_xywh_gt.append(box_xywh_gt.view(-1, 4)) | |
self.bbox_xywh_est.append(box_xywh_est.view(-1, 4)) | |
self.point_bbox_with_dp_indices.append( | |
torch.full_like(dp_gt.vertex_ids, self.nxt_bbox_with_dp_index) | |
) | |
self.point_bbox_indices.append(torch.full_like(dp_gt.vertex_ids, self.nxt_bbox_index)) | |
self.bbox_indices.append(self.nxt_bbox_index) | |
self.nxt_bbox_with_dp_index += 1 | |
def pack(self) -> Optional[PackedCseAnnotations]: | |
""" | |
Pack data into tensors | |
""" | |
if not len(self.x_gt): | |
# TODO: | |
# returning proper empty annotations would require | |
# creating empty tensors of appropriate shape and | |
# type on an appropriate device; | |
# we return None so far to indicate empty annotations | |
return None | |
return PackedCseAnnotations( | |
x_gt=torch.cat(self.x_gt, 0), | |
y_gt=torch.cat(self.y_gt, 0), | |
vertex_mesh_ids_gt=torch.cat(self.vertex_mesh_ids_gt, 0), | |
vertex_ids_gt=torch.cat(self.vertex_ids_gt, 0), | |
# ignore segmentation annotations, if not all the instances contain those | |
coarse_segm_gt=torch.cat(self.s_gt, 0) | |
if len(self.s_gt) == len(self.bbox_xywh_gt) | |
else None, | |
bbox_xywh_gt=torch.cat(self.bbox_xywh_gt, 0), | |
bbox_xywh_est=torch.cat(self.bbox_xywh_est, 0), | |
point_bbox_with_dp_indices=torch.cat(self.point_bbox_with_dp_indices, 0), | |
point_bbox_indices=torch.cat(self.point_bbox_indices, 0), | |
bbox_indices=torch.as_tensor( | |
self.bbox_indices, dtype=torch.long, device=self.x_gt[0].device | |
), | |
) | |