Spaces:
Running
Running
import webdataset as wds | |
from PIL import Image | |
import io | |
import matplotlib.pyplot as plt | |
import os | |
import json | |
from warnings import filterwarnings | |
# os.environ["CUDA_VISIBLE_DEVICES"] = "0" # choose GPU if you are on a multi GPU server | |
import numpy as np | |
import torch | |
import pytorch_lightning as pl | |
import torch.nn as nn | |
from torchvision import datasets, transforms | |
import tqdm | |
from os.path import join | |
from datasets import load_dataset | |
import pandas as pd | |
from torch.utils.data import Dataset, DataLoader | |
import json | |
import clip | |
from PIL import Image, ImageFile | |
##### This script will predict the aesthetic score for this image file: | |
img_path = "test.jpg" | |
# if you changed the MLP architecture during training, change it also here: | |
class MLP(pl.LightningModule): | |
def __init__(self, input_size, xcol='emb', ycol='avg_rating'): | |
super().__init__() | |
self.input_size = input_size | |
self.xcol = xcol | |
self.ycol = ycol | |
self.layers = nn.Sequential( | |
nn.Linear(self.input_size, 1024), | |
#nn.ReLU(), | |
nn.Dropout(0.2), | |
nn.Linear(1024, 128), | |
#nn.ReLU(), | |
nn.Dropout(0.2), | |
nn.Linear(128, 64), | |
#nn.ReLU(), | |
nn.Dropout(0.1), | |
nn.Linear(64, 16), | |
#nn.ReLU(), | |
nn.Linear(16, 1) | |
) | |
def forward(self, x): | |
return self.layers(x) | |
def training_step(self, batch, batch_idx): | |
x = batch[self.xcol] | |
y = batch[self.ycol].reshape(-1, 1) | |
x_hat = self.layers(x) | |
loss = F.mse_loss(x_hat, y) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
x = batch[self.xcol] | |
y = batch[self.ycol].reshape(-1, 1) | |
x_hat = self.layers(x) | |
loss = F.mse_loss(x_hat, y) | |
return loss | |
def configure_optimizers(self): | |
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) | |
return optimizer | |
def normalized(a, axis=-1, order=2): | |
import numpy as np # pylint: disable=import-outside-toplevel | |
l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) | |
l2[l2 == 0] = 1 | |
return a / np.expand_dims(l2, axis) | |
model = MLP(768) # CLIP embedding dim is 768 for CLIP ViT L 14 | |
s = torch.load("sac+logos+ava1-l14-linearMSE.pth") # load the model you trained previously or the model available in this repo | |
model.load_state_dict(s) | |
model.to("cuda") | |
model.eval() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model2, preprocess = clip.load("ViT-L/14", device=device) #RN50x64 | |
pil_image = Image.open(img_path) | |
image = preprocess(pil_image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
image_features = model2.encode_image(image) | |
im_emb_arr = normalized(image_features.cpu().detach().numpy() ) | |
prediction = model(torch.from_numpy(im_emb_arr).to(device).type(torch.cuda.FloatTensor)) | |
print( "Aesthetic score predicted by the model:") | |
print( prediction ) | |