Spaces:
Sleeping
Sleeping
Add altair charts
Browse files
app.py
CHANGED
@@ -6,5 +6,64 @@ from bruges.reflection.reflection import zoeppritz_rpp as zrpp
|
|
6 |
import pandas as pd
|
7 |
import altair as alt
|
8 |
|
9 |
-
|
10 |
-
st.write(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import pandas as pd
|
7 |
import altair as alt
|
8 |
|
9 |
+
p = st.slider("Select a value for Poisson's ratio", min_value=0.4, max_value=0.5)
|
10 |
+
st.write("Poisson's ratio is:", p)
|
11 |
+
|
12 |
+
def vs_from_poisson(vp, poisson):
|
13 |
+
return np.sqrt((vp**2 - 2*poisson*vp**2)/(2 - 2*poisson))
|
14 |
+
|
15 |
+
def gardners(vp):
|
16 |
+
return 1000*0.31*np.power(vp, 0.25)/1.33
|
17 |
+
|
18 |
+
def cartesian_product(*arrays):
|
19 |
+
ndim = len(arrays)
|
20 |
+
return (np.stack(np.meshgrid(*arrays), axis=-1)
|
21 |
+
.reshape(-1, ndim))
|
22 |
+
|
23 |
+
VP1 = np.arange(1530,1820,50)
|
24 |
+
THE = np.arange(0.0, 88., 1.)
|
25 |
+
POI = np.array([p])
|
26 |
+
|
27 |
+
params = cartesian_product(VP1, THE, POI)
|
28 |
+
VP1, THE, POI = [a.ravel() for a in np.hsplit(params, 3)]
|
29 |
+
|
30 |
+
VP0 = np.full(VP1.shape, 1520.)
|
31 |
+
# V-RMS for ~200 m water depth
|
32 |
+
VS0 = np.full(VP1.shape, 0.)
|
33 |
+
RH0 = np.full(VP1.shape, 1025)
|
34 |
+
# 1025 kg/m^3 per Inversion of the physical properties of seafloor surface, South China Sea, Zhou et al 2021
|
35 |
+
VP1 = VP1
|
36 |
+
VS1 = vs_from_poisson(VP1,POI)
|
37 |
+
RH1 = gardners(VP1)
|
38 |
+
|
39 |
+
params = {"vp1": VP0, "vs1": VS0, "rho1": RH1,
|
40 |
+
"vp2": VP1, "vs2": VS1, "rho2": RH1,
|
41 |
+
"theta1":THE}
|
42 |
+
|
43 |
+
def loop_zrpp(vp1,vs1,rho1,vp2,vs2,rho2,theta1):
|
44 |
+
refl_loop = np.empty(len(vp1), dtype=complex)
|
45 |
+
for i in range(vp1.shape[0]):
|
46 |
+
refl_loop[i] = zrpp(vp1=vp1[i], vs1=vs1[i], rho1=rho1[i],
|
47 |
+
vp2=vp2[i], vs2=vs2[i], rho2=rho2[i],
|
48 |
+
theta1=theta1[i])
|
49 |
+
return refl_loop
|
50 |
+
|
51 |
+
r = loop_zrpp(**params)
|
52 |
+
|
53 |
+
df = pd.DataFrame({"Vp sub-WB": VP1, "Poisson_s ratio": POI,
|
54 |
+
"Angle": THE, "Amplitude": np.real(r)})
|
55 |
+
df["Ang_Crit"] = np.degrees(np.arcsin(1500 / df["Vp sub-WB"].values))
|
56 |
+
df = df[df["Angle"] < df["Ang_Crit"]]
|
57 |
+
|
58 |
+
chart = alt.Chart(df).mark_line().encode(
|
59 |
+
x="Angle",
|
60 |
+
y="Amplitude",
|
61 |
+
color="Vp sub-WB"
|
62 |
+
).properties(
|
63 |
+
width=180,
|
64 |
+
height=180
|
65 |
+
).facet(
|
66 |
+
column='Poisson_s ratio:N'
|
67 |
+
)
|
68 |
+
|
69 |
+
st.altair_chart(chart)
|