Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import logging | |
| from spandrel import ModelLoader, ImageModelDescriptor | |
| from comfy import model_management | |
| import torch | |
| import comfy.utils | |
| import folder_paths | |
| try: | |
| from spandrel_extra_arches import EXTRA_REGISTRY | |
| from spandrel import MAIN_REGISTRY | |
| MAIN_REGISTRY.add(*EXTRA_REGISTRY) | |
| logging.info("Successfully imported spandrel_extra_arches: support for non commercial upscale models.") | |
| except: | |
| pass | |
| class UpscaleModelLoader: | |
| def INPUT_TYPES(s): | |
| return {"required": { "model_name": (folder_paths.get_filename_list("upscale_models"), ), | |
| }} | |
| RETURN_TYPES = ("UPSCALE_MODEL",) | |
| FUNCTION = "load_model" | |
| CATEGORY = "loaders" | |
| def load_model(self, model_name): | |
| model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name) | |
| sd = comfy.utils.load_torch_file(model_path, safe_load=True) | |
| if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd: | |
| sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""}) | |
| out = ModelLoader().load_from_state_dict(sd).eval() | |
| if not isinstance(out, ImageModelDescriptor): | |
| raise Exception("Upscale model must be a single-image model.") | |
| return (out, ) | |
| class ImageUpscaleWithModel: | |
| def INPUT_TYPES(s): | |
| return {"required": { "upscale_model": ("UPSCALE_MODEL",), | |
| "image": ("IMAGE",), | |
| }} | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "upscale" | |
| CATEGORY = "image/upscaling" | |
| def upscale(self, upscale_model, image): | |
| device = model_management.get_torch_device() | |
| memory_required = model_management.module_size(upscale_model.model) | |
| memory_required += (512 * 512 * 3) * image.element_size() * max(upscale_model.scale, 1.0) * 384.0 #The 384.0 is an estimate of how much some of these models take, TODO: make it more accurate | |
| memory_required += image.nelement() * image.element_size() | |
| model_management.free_memory(memory_required, device) | |
| upscale_model.to(device) | |
| in_img = image.movedim(-1,-3).to(device) | |
| tile = 512 | |
| overlap = 32 | |
| oom = True | |
| while oom: | |
| try: | |
| steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) | |
| pbar = comfy.utils.ProgressBar(steps) | |
| s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) | |
| oom = False | |
| except model_management.OOM_EXCEPTION as e: | |
| tile //= 2 | |
| if tile < 128: | |
| raise e | |
| upscale_model.to("cpu") | |
| s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) | |
| return (s,) | |
| NODE_CLASS_MAPPINGS = { | |
| "UpscaleModelLoader": UpscaleModelLoader, | |
| "ImageUpscaleWithModel": ImageUpscaleWithModel | |
| } | |