Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -136,34 +136,38 @@ def upload_to_sftp(local_filepath):
|
|
| 136 |
|
| 137 |
|
| 138 |
def calculate_new_dimensions(orig_w, orig_h):
|
| 139 |
-
if orig_w == 0 or orig_h == 0: return int(
|
| 140 |
if orig_w >= orig_h:
|
| 141 |
-
new_h, new_w =
|
| 142 |
else:
|
| 143 |
-
new_w, new_h =
|
| 144 |
return int(max(256, min(new_h, MAX_IMAGE_SIZE))), int(max(256, min(new_w, MAX_IMAGE_SIZE)))
|
| 145 |
|
| 146 |
|
| 147 |
def get_duration(*args, **kwargs):
|
| 148 |
duration_ui = kwargs.get('duration_ui', 5.0)
|
| 149 |
-
if duration_ui > 7.0: return
|
| 150 |
if duration_ui > 5.0: return 100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
return 90
|
| 152 |
|
| 153 |
-
@spaces.GPU(duration=
|
| 154 |
def superres_image(image_to_enhance: Image.Image):
|
| 155 |
print("Doing super-resolution.")
|
| 156 |
-
|
| 157 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 158 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True
|
| 159 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
|
| 160 |
torch.backends.cudnn.allow_tf32 = True
|
| 161 |
torch.backends.cudnn.deterministic = True
|
| 162 |
torch.set_float32_matmul_precision("high")
|
| 163 |
-
|
| 164 |
|
| 165 |
with torch.no_grad():
|
| 166 |
-
upscale = upscaler(
|
| 167 |
enhanced_image = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 168 |
return enhanced_image
|
| 169 |
|
|
@@ -181,10 +185,7 @@ def enhance_frame(prompt, image_to_enhance: Image.Image):
|
|
| 181 |
torch.backends.cudnn.allow_tf32 = True
|
| 182 |
torch.backends.cudnn.deterministic = True
|
| 183 |
torch.set_float32_matmul_precision("high")
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
enhanced_image = enhancer_pipeline(prompt=refine_prompt, image=image_to_enhance, strength=0.1, generator=generator, num_inference_steps=160).images[0]
|
| 188 |
print("Frame enhancement successful.")
|
| 189 |
except Exception as e:
|
| 190 |
print(f"Error during frame enhancement: {e}")
|
|
|
|
| 136 |
|
| 137 |
|
| 138 |
def calculate_new_dimensions(orig_w, orig_h):
|
| 139 |
+
if orig_w == 0 or orig_h == 0: return int(1024), int(1024)
|
| 140 |
if orig_w >= orig_h:
|
| 141 |
+
new_h, new_w = 1024, round((1024 * (orig_w / orig_h)) / 32) * 32
|
| 142 |
else:
|
| 143 |
+
new_w, new_h = 1024, round((1024 * (orig_h / orig_w)) / 32) * 32
|
| 144 |
return int(max(256, min(new_h, MAX_IMAGE_SIZE))), int(max(256, min(new_w, MAX_IMAGE_SIZE)))
|
| 145 |
|
| 146 |
|
| 147 |
def get_duration(*args, **kwargs):
|
| 148 |
duration_ui = kwargs.get('duration_ui', 5.0)
|
| 149 |
+
if duration_ui > 7.0: return 110
|
| 150 |
if duration_ui > 5.0: return 100
|
| 151 |
+
if duration_ui > 4.0: return 90
|
| 152 |
+
if duration_ui > 3.0: return 70
|
| 153 |
+
if duration_ui > 2.0: return 60
|
| 154 |
+
if duration_ui > 1.5: return 50
|
| 155 |
+
if duration_ui > 1.0: return 45
|
| 156 |
+
if duration_ui > 0.5: return 30
|
| 157 |
return 90
|
| 158 |
|
| 159 |
+
@spaces.GPU(duration=20)
|
| 160 |
def superres_image(image_to_enhance: Image.Image):
|
| 161 |
print("Doing super-resolution.")
|
|
|
|
| 162 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 163 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True
|
| 164 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
|
| 165 |
torch.backends.cudnn.allow_tf32 = True
|
| 166 |
torch.backends.cudnn.deterministic = True
|
| 167 |
torch.set_float32_matmul_precision("high")
|
|
|
|
| 168 |
|
| 169 |
with torch.no_grad():
|
| 170 |
+
upscale = upscaler(image_to_enhance, tiling=True, tile_width=1024, tile_height=1024)
|
| 171 |
enhanced_image = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 172 |
return enhanced_image
|
| 173 |
|
|
|
|
| 185 |
torch.backends.cudnn.allow_tf32 = True
|
| 186 |
torch.backends.cudnn.deterministic = True
|
| 187 |
torch.set_float32_matmul_precision("high")
|
| 188 |
+
enhanced_image = enhancer_pipeline(prompt=refine_prompt, image=image_to_enhance, strength=0.15, generator=generator, num_inference_steps=220).images[0]
|
|
|
|
|
|
|
|
|
|
| 189 |
print("Frame enhancement successful.")
|
| 190 |
except Exception as e:
|
| 191 |
print(f"Error during frame enhancement: {e}")
|