Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -107,8 +107,6 @@ print(f"Target inference device: {target_inference_device}")
|
|
| 107 |
pipeline_instance.to(target_inference_device)
|
| 108 |
if latent_upsampler_instance: latent_upsampler_instance.to(target_inference_device)
|
| 109 |
|
| 110 |
-
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 111 |
-
|
| 112 |
def calculate_new_dimensions(orig_w, orig_h):
|
| 113 |
if orig_w == 0 or orig_h == 0: return int(768), int(768)
|
| 114 |
if orig_w >= orig_h:
|
|
@@ -137,7 +135,7 @@ def enhance_frame(prompt, image_to_enhance: Image.Image):
|
|
| 137 |
try:
|
| 138 |
print("Moving enhancer pipeline to GPU...")
|
| 139 |
seed = random.randint(0, MAX_SEED)
|
| 140 |
-
generator.manual_seed(seed)
|
| 141 |
enhancer_pipeline.to("cuda",torch.bfloat16)
|
| 142 |
refine_prompt = prompt +" high detail, sharp focus, 8k, professional"
|
| 143 |
enhanced_image = enhancer_pipeline(prompt=refine_prompt, image=image_to_enhance, strength=0.1, generator=generator, num_inference_steps=160).images[0]
|
|
@@ -224,7 +222,7 @@ def generate(prompt, negative_prompt, clips_list, input_image_filepath, input_vi
|
|
| 224 |
if randomize_seed: seed_ui = random.randint(0, 2**32 - 1)
|
| 225 |
seed_everething(int(seed_ui))
|
| 226 |
seed = random.randint(0, MAX_SEED)
|
| 227 |
-
generator.manual_seed(seed)
|
| 228 |
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(round((max(1, round(duration_ui * fps)) - 1.0) / 8.0) * 8 + 1)))
|
| 229 |
actual_height, actual_width = int(height_ui), int(width_ui)
|
| 230 |
height_padded, width_padded = ((actual_height - 1) // 32 + 1) * 32, ((actual_width - 1) // 32 + 1) * 32
|
|
|
|
| 107 |
pipeline_instance.to(target_inference_device)
|
| 108 |
if latent_upsampler_instance: latent_upsampler_instance.to(target_inference_device)
|
| 109 |
|
|
|
|
|
|
|
| 110 |
def calculate_new_dimensions(orig_w, orig_h):
|
| 111 |
if orig_w == 0 or orig_h == 0: return int(768), int(768)
|
| 112 |
if orig_w >= orig_h:
|
|
|
|
| 135 |
try:
|
| 136 |
print("Moving enhancer pipeline to GPU...")
|
| 137 |
seed = random.randint(0, MAX_SEED)
|
| 138 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 139 |
enhancer_pipeline.to("cuda",torch.bfloat16)
|
| 140 |
refine_prompt = prompt +" high detail, sharp focus, 8k, professional"
|
| 141 |
enhanced_image = enhancer_pipeline(prompt=refine_prompt, image=image_to_enhance, strength=0.1, generator=generator, num_inference_steps=160).images[0]
|
|
|
|
| 222 |
if randomize_seed: seed_ui = random.randint(0, 2**32 - 1)
|
| 223 |
seed_everething(int(seed_ui))
|
| 224 |
seed = random.randint(0, MAX_SEED)
|
| 225 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 226 |
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(round((max(1, round(duration_ui * fps)) - 1.0) / 8.0) * 8 + 1)))
|
| 227 |
actual_height, actual_width = int(height_ui), int(width_ui)
|
| 228 |
height_padded, width_padded = ((actual_height - 1) // 32 + 1) * 32, ((actual_width - 1) // 32 + 1) * 32
|