Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,6 +15,7 @@ import torch
|
|
| 15 |
# --- NEW ---
|
| 16 |
# Import the OpenCV library
|
| 17 |
import cv2
|
|
|
|
| 18 |
|
| 19 |
torch.backends.cuda.matmul.allow_tf32 = False
|
| 20 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
@@ -37,6 +38,27 @@ from PIL import Image
|
|
| 37 |
from huggingface_hub import hf_hub_download
|
| 38 |
import shutil
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
from inference import (
|
| 41 |
create_ltx_video_pipeline,
|
| 42 |
create_latent_upsampler,
|
|
@@ -87,58 +109,64 @@ def calculate_new_dimensions(orig_w, orig_h):
|
|
| 87 |
new_w, new_h = 768, round((768 * (orig_h / orig_w)) / 32) * 32
|
| 88 |
return int(max(256, min(new_h, MAX_IMAGE_SIZE))), int(max(256, min(new_w, MAX_IMAGE_SIZE)))
|
| 89 |
|
|
|
|
| 90 |
def get_duration(*args, **kwargs):
|
| 91 |
duration_ui = kwargs.get('duration_ui', 5.0)
|
| 92 |
-
if duration_ui >
|
| 93 |
-
if duration_ui >
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
# instead of imageio. This should definitively fix the FFmpeg error.
|
| 101 |
-
def use_last_frame_as_input(video_filepath):
|
| 102 |
if not video_filepath or not os.path.exists(video_filepath):
|
| 103 |
-
gr.Warning("No video available
|
| 104 |
return None, gr.update()
|
| 105 |
-
|
| 106 |
try:
|
| 107 |
-
print(f"Reading last frame from {video_filepath} using OpenCV...")
|
| 108 |
cap = cv2.VideoCapture(video_filepath)
|
| 109 |
-
|
| 110 |
-
# Get the total number of frames
|
| 111 |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 112 |
-
if frame_count < 1:
|
| 113 |
-
raise ValueError("Video file could not be read or contains no frames.")
|
| 114 |
-
|
| 115 |
-
# Set the position to the last frame (frame indices are 0-based)
|
| 116 |
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count - 1)
|
| 117 |
-
|
| 118 |
-
# Read the frame
|
| 119 |
ret, frame = cap.read()
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
except Exception as e:
|
| 135 |
-
|
| 136 |
-
gr.Error(f"Failed to extract the last frame: {e}")
|
| 137 |
return None, gr.update()
|
| 138 |
finally:
|
| 139 |
-
|
| 140 |
-
if 'cap' in locals() and cap.isOpened():
|
| 141 |
-
cap.release()
|
| 142 |
|
| 143 |
|
| 144 |
def stitch_videos(clips_list):
|
|
@@ -156,19 +184,22 @@ def stitch_videos(clips_list):
|
|
| 156 |
except Exception as e:
|
| 157 |
raise gr.Error(f"Failed to stitch videos: {e}")
|
| 158 |
|
|
|
|
| 159 |
def clear_clips():
|
| 160 |
return [], "Clips created: 0", None, None
|
| 161 |
|
|
|
|
| 162 |
@spaces.GPU(duration=get_duration)
|
| 163 |
def generate(prompt, negative_prompt, clips_list, input_image_filepath, input_video_filepath,
|
| 164 |
height_ui, width_ui, mode, duration_ui, ui_frames_to_use,
|
| 165 |
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag, num_steps, fps,
|
| 166 |
progress=gr.Progress(track_tqdm=True)):
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
if mode
|
| 170 |
-
|
| 171 |
-
elif mode == "video-to-video" and not input_video_filepath:
|
|
|
|
| 172 |
if randomize_seed: seed_ui = random.randint(0, 2**32 - 1)
|
| 173 |
seed_everething(int(seed_ui))
|
| 174 |
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(round((max(1, round(duration_ui * fps)) - 1.0) / 8.0) * 8 + 1)))
|
|
@@ -205,11 +236,16 @@ def generate(prompt, negative_prompt, clips_list, input_image_filepath, input_vi
|
|
| 205 |
counter_text = f"Clips created: {len(updated_clips_list)}"
|
| 206 |
return output_video_path, seed_ui, gr.update(visible=True), updated_clips_list, counter_text
|
| 207 |
|
| 208 |
-
|
| 209 |
-
def update_task_image():
|
| 210 |
-
|
| 211 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
css="""#col-container{margin:0 auto;max-width:900px;}"""
|
|
|
|
| 213 |
with gr.Blocks(css=css) as demo:
|
| 214 |
clips_state = gr.State([])
|
| 215 |
gr.Markdown("# LTX Video Clip Stitcher")
|
|
@@ -218,13 +254,23 @@ with gr.Blocks(css=css) as demo:
|
|
| 218 |
with gr.Column():
|
| 219 |
with gr.Tabs() as tabs:
|
| 220 |
with gr.Tab("image-to-video", id="i2v_tab") as image_tab:
|
| 221 |
-
video_i_hidden = gr.Textbox(visible=False);
|
|
|
|
|
|
|
|
|
|
| 222 |
with gr.Tab("text-to-video", id="t2v_tab") as text_tab:
|
| 223 |
-
image_n_hidden = gr.Textbox(visible=False);
|
|
|
|
|
|
|
| 224 |
with gr.Tab("video-to-video", id="v2v_tab") as video_tab:
|
| 225 |
-
image_v_hidden = gr.Textbox(visible=False);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
duration_input = gr.Slider(label="Clip Duration (seconds)", minimum=1.0, maximum=10.0, value=2.0, step=0.1)
|
| 227 |
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True)
|
|
|
|
| 228 |
with gr.Column():
|
| 229 |
output_video = gr.Video(label="Last Generated Clip", interactive=False)
|
| 230 |
use_last_frame_button = gr.Button("Use Last Frame as Input Image", visible=False)
|
|
@@ -233,26 +279,40 @@ with gr.Blocks(css=css) as demo:
|
|
| 233 |
with gr.Row(): stitch_button = gr.Button("🎬 Stitch All Clips"); clear_button = gr.Button("🗑️ Clear All Clips")
|
| 234 |
final_video_output = gr.Video(label="Final Stitched Video", interactive=False)
|
| 235 |
with gr.Accordion("Advanced settings", open=False):
|
| 236 |
-
mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False);
|
| 237 |
-
|
| 238 |
-
with gr.Row(
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
def handle_image_upload_for_dims(f, h, w):
|
| 241 |
if not f: return gr.update(value=h), gr.update(value=w)
|
| 242 |
img = Image.open(f); new_h, new_w = calculate_new_dimensions(img.width, img.height); return gr.update(value=new_h), gr.update(value=new_w)
|
| 243 |
def handle_video_upload_for_dims(f, h, w):
|
| 244 |
if not f or not os.path.exists(str(f)): return gr.update(value=h), gr.update(value=w)
|
| 245 |
with imageio.get_reader(str(f)) as reader:
|
| 246 |
-
meta = reader.get_meta_data(); orig_w, orig_h = meta.get('size', (reader.get_data(0).shape[1], reader.get_data(0).shape[0]));
|
| 247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
common_params = [height_input, width_input, mode, duration_input, frames_to_use, seed_input, randomize_seed_input, guidance_scale_input, improve_texture, num_steps, fps]
|
| 249 |
-
t2v_inputs = [t2v_prompt, negative_prompt_input, clips_state, image_n_hidden, video_n_hidden] + common_params;
|
|
|
|
|
|
|
| 250 |
gen_outputs = [output_video, seed_input, use_last_frame_button, clips_state, clip_counter_display]
|
| 251 |
hide_btn = lambda: gr.update(visible=False)
|
| 252 |
t2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=t2v_inputs, outputs=gen_outputs, api_name="text_to_video")
|
| 253 |
i2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=i2v_inputs, outputs=gen_outputs, api_name="image_to_video")
|
| 254 |
v2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=v2v_inputs, outputs=gen_outputs, api_name="video_to_video")
|
| 255 |
-
use_last_frame_button.click(fn=use_last_frame_as_input, inputs=[output_video], outputs=[image_i2v, tabs])
|
| 256 |
stitch_button.click(fn=stitch_videos, inputs=[clips_state], outputs=[final_video_output])
|
| 257 |
clear_button.click(fn=clear_clips, outputs=[clips_state, clip_counter_display, output_video, final_video_output])
|
| 258 |
if __name__ == "__main__":
|
|
|
|
| 15 |
# --- NEW ---
|
| 16 |
# Import the OpenCV library
|
| 17 |
import cv2
|
| 18 |
+
import gc
|
| 19 |
|
| 20 |
torch.backends.cuda.matmul.allow_tf32 = False
|
| 21 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
|
|
| 38 |
from huggingface_hub import hf_hub_download
|
| 39 |
import shutil
|
| 40 |
|
| 41 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 42 |
+
|
| 43 |
+
#import diffusers
|
| 44 |
+
from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL
|
| 45 |
+
print("Loading SDXL Image-to-Image pipeline...")
|
| 46 |
+
#vaeX = AutoencoderKL.from_pretrained('stabilityai/stable-diffusion-xl-refiner-1.0',subfolder='vae')
|
| 47 |
+
enhancer_pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
| 48 |
+
#"stabilityai/stable-diffusion-xl-base-1.0",
|
| 49 |
+
"ford442/stable-diffusion-xl-refiner-1.0-bf16",
|
| 50 |
+
#torch_dtype=torch.bfloat16,
|
| 51 |
+
#variant="fp16",
|
| 52 |
+
#use_safetensors=True,
|
| 53 |
+
requires_aesthetics_score=True,
|
| 54 |
+
#vae=None
|
| 55 |
+
)
|
| 56 |
+
#enhancer_pipeline.vae=vaeX
|
| 57 |
+
enhancer_pipeline.vae.set_default_attn_processor()
|
| 58 |
+
|
| 59 |
+
enhancer_pipeline.to("cpu")
|
| 60 |
+
print("SDXL Image-to-Image pipeline loaded successfully.")
|
| 61 |
+
|
| 62 |
from inference import (
|
| 63 |
create_ltx_video_pipeline,
|
| 64 |
create_latent_upsampler,
|
|
|
|
| 109 |
new_w, new_h = 768, round((768 * (orig_h / orig_w)) / 32) * 32
|
| 110 |
return int(max(256, min(new_h, MAX_IMAGE_SIZE))), int(max(256, min(new_w, MAX_IMAGE_SIZE)))
|
| 111 |
|
| 112 |
+
|
| 113 |
def get_duration(*args, **kwargs):
|
| 114 |
duration_ui = kwargs.get('duration_ui', 5.0)
|
| 115 |
+
if duration_ui > 7.0: return 120
|
| 116 |
+
if duration_ui > 5.0: return 100
|
| 117 |
+
return 90
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
@spaces.GPU()
|
| 121 |
+
def enhance_frame(image_to_enhance: Image.Image):
|
| 122 |
+
try:
|
| 123 |
+
print("Moving enhancer pipeline to GPU...")
|
| 124 |
+
seed = random.randint(0, MAX_SEED)
|
| 125 |
+
generator = torch.Generator(device='cpu').manual_seed(seed)
|
| 126 |
+
enhancer_pipeline.to("cuda",torch.bfloat16)
|
| 127 |
+
refine_prompt = "cinematic, high detail, sharp focus, 8k, professional photography"
|
| 128 |
+
enhanced_image = enhancer_pipeline(prompt=refine_prompt, image=image_to_enhance, strength=0.125, generator=generator, num_inference_steps=100).images[0]
|
| 129 |
+
print("Frame enhancement successful.")
|
| 130 |
+
except Exception as e:
|
| 131 |
+
print(f"Error during frame enhancement: {e}")
|
| 132 |
+
gr.Warning("Frame enhancement failed. Using original frame.")
|
| 133 |
+
return image_to_enhance
|
| 134 |
+
finally:
|
| 135 |
+
print("Moving enhancer pipeline to CPU...")
|
| 136 |
+
enhancer_pipeline.to("cpu")
|
| 137 |
+
gc.collect()
|
| 138 |
+
torch.cuda.empty_cache()
|
| 139 |
+
return enhanced_image
|
| 140 |
|
| 141 |
+
|
| 142 |
+
def use_last_frame_as_input(video_filepath, do_enhance):
|
|
|
|
|
|
|
| 143 |
if not video_filepath or not os.path.exists(video_filepath):
|
| 144 |
+
gr.Warning("No video clip available.")
|
| 145 |
return None, gr.update()
|
| 146 |
+
cap = None
|
| 147 |
try:
|
|
|
|
| 148 |
cap = cv2.VideoCapture(video_filepath)
|
|
|
|
|
|
|
| 149 |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count - 1)
|
|
|
|
|
|
|
| 151 |
ret, frame = cap.read()
|
| 152 |
+
if not ret: raise ValueError("Failed to read frame.")
|
| 153 |
+
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 154 |
+
# 1. Immediately yield the original frame to the UI
|
| 155 |
+
print("Displaying original last frame...")
|
| 156 |
+
yield pil_image, gr.update()
|
| 157 |
+
if do_enhance:
|
| 158 |
+
enhanced_image = enhance_frame(pil_image)
|
| 159 |
+
# 2. Yield the enhanced frame and switch the tab
|
| 160 |
+
print("Displaying enhanced frame and switching tab...")
|
| 161 |
+
yield enhanced_image, gr.update(selected="i2v_tab")
|
| 162 |
+
else:
|
| 163 |
+
# If not enhancing, just switch the tab
|
| 164 |
+
yield pil_image, gr.update(selected="i2v_tab")
|
|
|
|
| 165 |
except Exception as e:
|
| 166 |
+
gr.Error(f"Failed to extract frame: {e}")
|
|
|
|
| 167 |
return None, gr.update()
|
| 168 |
finally:
|
| 169 |
+
if cap: cap.release()
|
|
|
|
|
|
|
| 170 |
|
| 171 |
|
| 172 |
def stitch_videos(clips_list):
|
|
|
|
| 184 |
except Exception as e:
|
| 185 |
raise gr.Error(f"Failed to stitch videos: {e}")
|
| 186 |
|
| 187 |
+
|
| 188 |
def clear_clips():
|
| 189 |
return [], "Clips created: 0", None, None
|
| 190 |
|
| 191 |
+
|
| 192 |
@spaces.GPU(duration=get_duration)
|
| 193 |
def generate(prompt, negative_prompt, clips_list, input_image_filepath, input_video_filepath,
|
| 194 |
height_ui, width_ui, mode, duration_ui, ui_frames_to_use,
|
| 195 |
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag, num_steps, fps,
|
| 196 |
progress=gr.Progress(track_tqdm=True)):
|
| 197 |
+
if mode not in ["text-to-video", "image-to-video", "video-to-video"]:
|
| 198 |
+
raise gr.Error(f"Invalid mode: {mode}.")
|
| 199 |
+
if mode == "image-to-video" and not input_image_filepath:
|
| 200 |
+
raise gr.Error("input_image_filepath is required for image-to-video mode")
|
| 201 |
+
elif mode == "video-to-video" and not input_video_filepath:
|
| 202 |
+
raise gr.Error("input_video_filepath is required for video-to-video mode")
|
| 203 |
if randomize_seed: seed_ui = random.randint(0, 2**32 - 1)
|
| 204 |
seed_everething(int(seed_ui))
|
| 205 |
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(round((max(1, round(duration_ui * fps)) - 1.0) / 8.0) * 8 + 1)))
|
|
|
|
| 236 |
counter_text = f"Clips created: {len(updated_clips_list)}"
|
| 237 |
return output_video_path, seed_ui, gr.update(visible=True), updated_clips_list, counter_text
|
| 238 |
|
| 239 |
+
|
| 240 |
+
def update_task_image():
|
| 241 |
+
return "image-to-video"
|
| 242 |
+
def update_task_text():
|
| 243 |
+
return "text-to-video"
|
| 244 |
+
def update_task_video():
|
| 245 |
+
return "video-to-video"
|
| 246 |
+
|
| 247 |
css="""#col-container{margin:0 auto;max-width:900px;}"""
|
| 248 |
+
|
| 249 |
with gr.Blocks(css=css) as demo:
|
| 250 |
clips_state = gr.State([])
|
| 251 |
gr.Markdown("# LTX Video Clip Stitcher")
|
|
|
|
| 254 |
with gr.Column():
|
| 255 |
with gr.Tabs() as tabs:
|
| 256 |
with gr.Tab("image-to-video", id="i2v_tab") as image_tab:
|
| 257 |
+
video_i_hidden = gr.Textbox(visible=False);
|
| 258 |
+
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam", "clipboard"]);
|
| 259 |
+
i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3);
|
| 260 |
+
i2v_button = gr.Button("Generate Image-to-Video Clip", variant="primary")
|
| 261 |
with gr.Tab("text-to-video", id="t2v_tab") as text_tab:
|
| 262 |
+
image_n_hidden = gr.Textbox(visible=False);
|
| 263 |
+
video_n_hidden = gr.Textbox(visible=False); t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3);
|
| 264 |
+
t2v_button = gr.Button("Generate Text-to-Video Clip", variant="primary")
|
| 265 |
with gr.Tab("video-to-video", id="v2v_tab") as video_tab:
|
| 266 |
+
image_v_hidden = gr.Textbox(visible=False);
|
| 267 |
+
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"]);
|
| 268 |
+
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=120, value=9, step=8, info="Must be N*8+1.");
|
| 269 |
+
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3);
|
| 270 |
+
v2v_button = gr.Button("Generate Video-to-Video Clip", variant="primary")
|
| 271 |
duration_input = gr.Slider(label="Clip Duration (seconds)", minimum=1.0, maximum=10.0, value=2.0, step=0.1)
|
| 272 |
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True)
|
| 273 |
+
enhance_checkbox = gr.Checkbox(label="Improve Frame (SDXL Refiner)", value=True)
|
| 274 |
with gr.Column():
|
| 275 |
output_video = gr.Video(label="Last Generated Clip", interactive=False)
|
| 276 |
use_last_frame_button = gr.Button("Use Last Frame as Input Image", visible=False)
|
|
|
|
| 279 |
with gr.Row(): stitch_button = gr.Button("🎬 Stitch All Clips"); clear_button = gr.Button("🗑️ Clear All Clips")
|
| 280 |
final_video_output = gr.Video(label="Final Stitched Video", interactive=False)
|
| 281 |
with gr.Accordion("Advanced settings", open=False):
|
| 282 |
+
mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False);
|
| 283 |
+
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
|
| 284 |
+
with gr.Row():
|
| 285 |
+
seed_input = gr.Number(label="Seed", value=42, precision=0);
|
| 286 |
+
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
|
| 287 |
+
with gr.Row(visible=False):
|
| 288 |
+
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1)
|
| 289 |
+
with gr.Row():
|
| 290 |
+
height_input = gr.Slider(label="Height", value=768, step=32, minimum=32, maximum=MAX_IMAGE_SIZE);
|
| 291 |
+
width_input = gr.Slider(label="Width", value=768, step=32, minimum=32, maximum=MAX_IMAGE_SIZE);
|
| 292 |
+
num_steps = gr.Slider(label="Steps", value=20, step=1, minimum=1, maximum=420);
|
| 293 |
+
fps = gr.Slider(label="FPS", value=30.0, step=1.0, minimum=4.0, maximum=60.0)
|
| 294 |
def handle_image_upload_for_dims(f, h, w):
|
| 295 |
if not f: return gr.update(value=h), gr.update(value=w)
|
| 296 |
img = Image.open(f); new_h, new_w = calculate_new_dimensions(img.width, img.height); return gr.update(value=new_h), gr.update(value=new_w)
|
| 297 |
def handle_video_upload_for_dims(f, h, w):
|
| 298 |
if not f or not os.path.exists(str(f)): return gr.update(value=h), gr.update(value=w)
|
| 299 |
with imageio.get_reader(str(f)) as reader:
|
| 300 |
+
meta = reader.get_meta_data(); orig_w, orig_h = meta.get('size', (reader.get_data(0).shape[1], reader.get_data(0).shape[0]));
|
| 301 |
+
new_h, new_w = calculate_new_dimensions(orig_w, orig_h); return gr.update(value=new_h), gr.update(value=new_w)
|
| 302 |
+
image_i2v.upload(handle_image_upload_for_dims, [image_i2v, height_input, width_input], [height_input, width_input]);
|
| 303 |
+
video_v2v.upload(handle_video_upload_for_dims, [video_v2v, height_input, width_input], [height_input, width_input]);
|
| 304 |
+
image_tab.select(update_task_image, outputs=[mode]); text_tab.select(update_task_text, outputs=[mode]);
|
| 305 |
+
video_tab.select(update_task_video, outputs=[mode])
|
| 306 |
common_params = [height_input, width_input, mode, duration_input, frames_to_use, seed_input, randomize_seed_input, guidance_scale_input, improve_texture, num_steps, fps]
|
| 307 |
+
t2v_inputs = [t2v_prompt, negative_prompt_input, clips_state, image_n_hidden, video_n_hidden] + common_params;
|
| 308 |
+
i2v_inputs = [i2v_prompt, negative_prompt_input, clips_state, image_i2v, video_i_hidden] + common_params;
|
| 309 |
+
v2v_inputs = [v2v_prompt, negative_prompt_input, clips_state, image_v_hidden, video_v2v] + common_params
|
| 310 |
gen_outputs = [output_video, seed_input, use_last_frame_button, clips_state, clip_counter_display]
|
| 311 |
hide_btn = lambda: gr.update(visible=False)
|
| 312 |
t2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=t2v_inputs, outputs=gen_outputs, api_name="text_to_video")
|
| 313 |
i2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=i2v_inputs, outputs=gen_outputs, api_name="image_to_video")
|
| 314 |
v2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=v2v_inputs, outputs=gen_outputs, api_name="video_to_video")
|
| 315 |
+
use_last_frame_button.click(fn=use_last_frame_as_input, inputs=[output_video,enhance_checkbox], outputs=[image_i2v, tabs])
|
| 316 |
stitch_button.click(fn=stitch_videos, inputs=[clips_state], outputs=[final_video_output])
|
| 317 |
clear_button.click(fn=clear_clips, outputs=[clips_state, clip_counter_display, output_video, final_video_output])
|
| 318 |
if __name__ == "__main__":
|