Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
import os
|
| 3 |
os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
|
|
@@ -107,70 +111,79 @@ if latent_upsampler_instance:
|
|
| 107 |
latent_upsampler_instance.to(target_inference_device)
|
| 108 |
|
| 109 |
|
| 110 |
-
# --- Helper
|
| 111 |
-
MIN_DIM_SLIDER = 256
|
| 112 |
-
TARGET_FIXED_SIDE = 768
|
| 113 |
-
|
| 114 |
def calculate_new_dimensions(orig_w, orig_h):
|
| 115 |
if orig_w == 0 or orig_h == 0:
|
| 116 |
-
return int(
|
| 117 |
if orig_w >= orig_h:
|
| 118 |
-
new_h =
|
| 119 |
-
|
| 120 |
-
new_w_ideal = new_h * aspect_ratio
|
| 121 |
-
new_w = round(new_w_ideal / 32) * 32
|
| 122 |
-
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
|
| 123 |
-
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
|
| 124 |
else:
|
| 125 |
-
new_w =
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
return int(new_h), int(new_w)
|
| 132 |
-
|
| 133 |
-
def get_duration(prompt, negative_prompt, input_image_filepath, input_video_filepath,
|
| 134 |
-
height_ui, width_ui, mode,
|
| 135 |
-
duration_ui, ui_frames_to_use,
|
| 136 |
-
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag, num_steps, fps,
|
| 137 |
-
progress):
|
| 138 |
if duration_ui > 20.0: return 120
|
| 139 |
if duration_ui > 13.0: return 90
|
| 140 |
if duration_ui > 7.0: return 75
|
| 141 |
if duration_ui > 5.0: return 60
|
| 142 |
-
|
| 143 |
|
| 144 |
def use_last_frame_as_input(video_filepath):
|
| 145 |
if not video_filepath or not os.path.exists(video_filepath):
|
| 146 |
gr.Warning("No video available to get the last frame from.")
|
| 147 |
return None, gr.update()
|
| 148 |
try:
|
| 149 |
-
print(f"Extracting last frame from {video_filepath}")
|
| 150 |
with imageio.get_reader(video_filepath) as reader:
|
| 151 |
-
last_frame_np =
|
| 152 |
-
for frame in reader:
|
| 153 |
-
last_frame_np = frame
|
| 154 |
-
if last_frame_np is None:
|
| 155 |
-
raise ValueError("Could not read any frames from the video.")
|
| 156 |
pil_image = Image.fromarray(last_frame_np)
|
| 157 |
-
|
| 158 |
-
timestamp = random.randint(10000, 99999)
|
| 159 |
-
output_image_path = os.path.join(temp_dir, f"last_frame_{timestamp}.png")
|
| 160 |
pil_image.save(output_image_path)
|
| 161 |
-
print(f"Saved last frame to {output_image_path}")
|
| 162 |
return output_image_path, gr.update(selected="i2v_tab")
|
| 163 |
except Exception as e:
|
| 164 |
-
print(f"Error extracting last frame: {e}")
|
| 165 |
gr.Error(f"Failed to extract the last frame: {e}")
|
| 166 |
return None, gr.update()
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
@spaces.GPU(duration=get_duration)
|
| 169 |
-
def generate(prompt, negative_prompt,
|
|
|
|
| 170 |
height_ui=512, width_ui=704, mode="text-to-video",
|
| 171 |
duration_ui=2.0, ui_frames_to_use=9,
|
| 172 |
seed_ui=42, randomize_seed=True, ui_guidance_scale=3.0, improve_texture_flag=True, num_steps=20, fps=30.0,
|
| 173 |
progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
| 174 |
if mode == "image-to-video" and not input_image_filepath:
|
| 175 |
raise gr.Error("input_image_filepath is required for image-to-video mode")
|
| 176 |
elif mode == "video-to-video" and not input_video_filepath:
|
|
@@ -231,33 +244,25 @@ def generate(prompt, negative_prompt, input_image_filepath=None, input_video_fil
|
|
| 231 |
if result_images_tensor is None:
|
| 232 |
raise gr.Error("Generation failed.")
|
| 233 |
pad_left, pad_right, pad_top, pad_bottom = padding_values
|
| 234 |
-
|
| 235 |
-
slice_w_end = -pad_right if pad_right > 0 else None
|
| 236 |
-
result_images_tensor = result_images_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
|
| 237 |
video_np = (np.clip(result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy(), 0, 1) * 255).astype(np.uint8)
|
| 238 |
output_video_path = os.path.join(tempfile.mkdtemp(), f"output_{random.randint(10000,99999)}.mp4")
|
| 239 |
-
|
| 240 |
-
# --- MODIFIED ---
|
| 241 |
-
# This block is restored to the original, correct version that loops through
|
| 242 |
-
# frames and uses `.append_data()` to save the video.
|
| 243 |
try:
|
| 244 |
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
|
| 245 |
-
for frame_idx in
|
| 246 |
-
progress(frame_idx / video_np
|
| 247 |
-
video_writer.append_data(
|
| 248 |
except Exception as e:
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
raise gr.Error(f"Failed to save video: {e2}")
|
| 258 |
-
|
| 259 |
-
return output_video_path, seed_ui, gr.update(visible=True)
|
| 260 |
|
|
|
|
| 261 |
def update_task_image(): return "image-to-video"
|
| 262 |
def update_task_text(): return "text-to-video"
|
| 263 |
def update_task_video(): return "video-to-video"
|
|
@@ -265,34 +270,52 @@ def update_task_video(): return "video-to-video"
|
|
| 265 |
css="""#col-container{margin:0 auto;max-width:900px;}"""
|
| 266 |
|
| 267 |
with gr.Blocks(css=css) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
gr.Markdown("# LTX Video 0.9.8 13B Distilled")
|
| 269 |
-
gr.Markdown("
|
| 270 |
-
|
| 271 |
with gr.Row():
|
| 272 |
with gr.Column():
|
| 273 |
with gr.Tabs() as tabs:
|
| 274 |
with gr.Tab("image-to-video", id="i2v_tab") as image_tab:
|
|
|
|
| 275 |
video_i_hidden = gr.Textbox(visible=False)
|
| 276 |
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam", "clipboard"])
|
| 277 |
i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3)
|
| 278 |
-
i2v_button = gr.Button("Generate Image-to-Video", variant="primary")
|
| 279 |
with gr.Tab("text-to-video", id="t2v_tab") as text_tab:
|
| 280 |
image_n_hidden = gr.Textbox(visible=False)
|
| 281 |
video_n_hidden = gr.Textbox(visible=False)
|
| 282 |
t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
|
| 283 |
-
t2v_button = gr.Button("Generate Text-to-Video", variant="primary")
|
| 284 |
with gr.Tab("video-to-video", id="v2v_tab") as video_tab:
|
| 285 |
image_v_hidden = gr.Textbox(visible=False)
|
| 286 |
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"])
|
| 287 |
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=120, value=9, step=8, info="Must be N*8+1.")
|
| 288 |
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
|
| 289 |
-
v2v_button = gr.Button("Generate Video-to-Video", variant="primary")
|
| 290 |
-
|
|
|
|
| 291 |
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True)
|
|
|
|
| 292 |
with gr.Column():
|
| 293 |
-
output_video = gr.Video(label="Generated
|
| 294 |
use_last_frame_button = gr.Button("Use Last Frame as Input Image", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
with gr.Accordion("Advanced settings", open=False):
|
|
|
|
| 296 |
mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False)
|
| 297 |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
|
| 298 |
with gr.Row():
|
|
@@ -305,6 +328,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 305 |
width_input = gr.Slider(label="Width", value=768, step=32, minimum=32, maximum=MAX_IMAGE_SIZE)
|
| 306 |
num_steps = gr.Slider(label="Steps", value=20, step=1, minimum=1, maximum=420)
|
| 307 |
fps = gr.Slider(label="FPS", value=30.0, step=1.0, minimum=4.0, maximum=60.0)
|
|
|
|
|
|
|
| 308 |
def handle_image_upload_for_dims(f, h, w):
|
| 309 |
if not f: return gr.update(value=h), gr.update(value=w)
|
| 310 |
img = Image.open(f)
|
|
@@ -322,18 +347,31 @@ with gr.Blocks(css=css) as demo:
|
|
| 322 |
image_tab.select(update_task_image, outputs=[mode])
|
| 323 |
text_tab.select(update_task_text, outputs=[mode])
|
| 324 |
video_tab.select(update_task_video, outputs=[mode])
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
hide_btn = lambda: gr.update(visible=False)
|
| 329 |
-
t2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=t2v_inputs, outputs=
|
| 330 |
-
i2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=i2v_inputs, outputs=
|
| 331 |
-
v2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=v2v_inputs, outputs=
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
|
|
|
|
|
|
|
|
|
| 337 |
|
| 338 |
if __name__ == "__main__":
|
| 339 |
if os.path.exists(models_dir): print(f"Model directory: {Path(models_dir).resolve()}")
|
|
|
|
| 1 |
+
# --- NEW ---
|
| 2 |
+
# Add moviepy for video stitching. Make sure to install it: pip install moviepy
|
| 3 |
+
from moviepy.editor import VideoFileClip, concatenate_videoclips
|
| 4 |
+
|
| 5 |
import spaces
|
| 6 |
import os
|
| 7 |
os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
|
|
|
|
| 111 |
latent_upsampler_instance.to(target_inference_device)
|
| 112 |
|
| 113 |
|
| 114 |
+
# --- Helper functions ---
|
|
|
|
|
|
|
|
|
|
| 115 |
def calculate_new_dimensions(orig_w, orig_h):
|
| 116 |
if orig_w == 0 or orig_h == 0:
|
| 117 |
+
return int(768), int(768)
|
| 118 |
if orig_w >= orig_h:
|
| 119 |
+
new_h = 768
|
| 120 |
+
new_w = round((new_h * (orig_w / orig_h)) / 32) * 32
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
else:
|
| 122 |
+
new_w = 768
|
| 123 |
+
new_h = round((new_w * (orig_h / orig_w)) / 32) * 32
|
| 124 |
+
return int(max(256, min(new_h, MAX_IMAGE_SIZE))), int(max(256, min(new_w, MAX_IMAGE_SIZE)))
|
| 125 |
+
|
| 126 |
+
def get_duration(*args, **kwargs): # Simplified for brevity
|
| 127 |
+
duration_ui = kwargs.get('duration_ui', 5.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
if duration_ui > 20.0: return 120
|
| 129 |
if duration_ui > 13.0: return 90
|
| 130 |
if duration_ui > 7.0: return 75
|
| 131 |
if duration_ui > 5.0: return 60
|
| 132 |
+
return 45
|
| 133 |
|
| 134 |
def use_last_frame_as_input(video_filepath):
|
| 135 |
if not video_filepath or not os.path.exists(video_filepath):
|
| 136 |
gr.Warning("No video available to get the last frame from.")
|
| 137 |
return None, gr.update()
|
| 138 |
try:
|
|
|
|
| 139 |
with imageio.get_reader(video_filepath) as reader:
|
| 140 |
+
last_frame_np = next(reversed(list(reader)))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
pil_image = Image.fromarray(last_frame_np)
|
| 142 |
+
output_image_path = os.path.join(tempfile.mkdtemp(), f"last_frame_{random.randint(10000,99999)}.png")
|
|
|
|
|
|
|
| 143 |
pil_image.save(output_image_path)
|
|
|
|
| 144 |
return output_image_path, gr.update(selected="i2v_tab")
|
| 145 |
except Exception as e:
|
|
|
|
| 146 |
gr.Error(f"Failed to extract the last frame: {e}")
|
| 147 |
return None, gr.update()
|
| 148 |
|
| 149 |
+
# --- NEW ---
|
| 150 |
+
# Function to stitch video clips together using moviepy
|
| 151 |
+
def stitch_videos(clips_list):
|
| 152 |
+
if not clips_list or len(clips_list) < 2:
|
| 153 |
+
raise gr.Error("You need at least two clips to stitch them together!")
|
| 154 |
+
|
| 155 |
+
print(f"Stitching {len(clips_list)} clips...")
|
| 156 |
+
try:
|
| 157 |
+
video_clips = [VideoFileClip(clip_path) for clip_path in clips_list]
|
| 158 |
+
final_clip = concatenate_videoclips(video_clips, method="compose")
|
| 159 |
+
|
| 160 |
+
final_output_path = os.path.join(tempfile.mkdtemp(), f"stitched_video_{random.randint(10000,99999)}.mp4")
|
| 161 |
+
final_clip.write_videofile(final_output_path, codec="libx264", audio=False, threads=4, preset='ultrafast')
|
| 162 |
+
|
| 163 |
+
# Close all clip objects to release file handles
|
| 164 |
+
for clip in video_clips:
|
| 165 |
+
clip.close()
|
| 166 |
+
|
| 167 |
+
print(f"Final video saved to {final_output_path}")
|
| 168 |
+
return final_output_path
|
| 169 |
+
except Exception as e:
|
| 170 |
+
print(f"Error during video stitching: {e}")
|
| 171 |
+
raise gr.Error(f"Failed to stitch videos: {e}")
|
| 172 |
+
|
| 173 |
+
# --- NEW ---
|
| 174 |
+
# Function to clear the clip list and reset the UI
|
| 175 |
+
def clear_clips():
|
| 176 |
+
return [], "Clips created: 0", None, None
|
| 177 |
+
|
| 178 |
@spaces.GPU(duration=get_duration)
|
| 179 |
+
def generate(prompt, negative_prompt, clips_list, # --- MODIFIED --- added clips_list
|
| 180 |
+
input_image_filepath=None, input_video_filepath=None,
|
| 181 |
height_ui=512, width_ui=704, mode="text-to-video",
|
| 182 |
duration_ui=2.0, ui_frames_to_use=9,
|
| 183 |
seed_ui=42, randomize_seed=True, ui_guidance_scale=3.0, improve_texture_flag=True, num_steps=20, fps=30.0,
|
| 184 |
progress=gr.Progress(track_tqdm=True)):
|
| 185 |
+
|
| 186 |
+
# ... (most of the generate function logic is unchanged) ...
|
| 187 |
if mode == "image-to-video" and not input_image_filepath:
|
| 188 |
raise gr.Error("input_image_filepath is required for image-to-video mode")
|
| 189 |
elif mode == "video-to-video" and not input_video_filepath:
|
|
|
|
| 244 |
if result_images_tensor is None:
|
| 245 |
raise gr.Error("Generation failed.")
|
| 246 |
pad_left, pad_right, pad_top, pad_bottom = padding_values
|
| 247 |
+
result_images_tensor = result_images_tensor[:, :, :actual_num_frames, pad_top:(-pad_bottom or None), pad_left:(-pad_right or None)]
|
|
|
|
|
|
|
| 248 |
video_np = (np.clip(result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy(), 0, 1) * 255).astype(np.uint8)
|
| 249 |
output_video_path = os.path.join(tempfile.mkdtemp(), f"output_{random.randint(10000,99999)}.mp4")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
try:
|
| 251 |
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
|
| 252 |
+
for frame_idx, frame in enumerate(video_np):
|
| 253 |
+
progress(frame_idx / len(video_np), desc="Saving video")
|
| 254 |
+
video_writer.append_data(frame)
|
| 255 |
except Exception as e:
|
| 256 |
+
gr.Error(f"Failed to save video: {e}")
|
| 257 |
+
|
| 258 |
+
# --- MODIFIED ---
|
| 259 |
+
# Append the new clip to the list and prepare the updated state and counter text
|
| 260 |
+
updated_clips_list = clips_list + [output_video_path]
|
| 261 |
+
counter_text = f"Clips created: {len(updated_clips_list)}"
|
| 262 |
+
|
| 263 |
+
return output_video_path, seed_ui, gr.update(visible=True), updated_clips_list, counter_text
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
+
# ... (update_task functions are unchanged) ...
|
| 266 |
def update_task_image(): return "image-to-video"
|
| 267 |
def update_task_text(): return "text-to-video"
|
| 268 |
def update_task_video(): return "video-to-video"
|
|
|
|
| 270 |
css="""#col-container{margin:0 auto;max-width:900px;}"""
|
| 271 |
|
| 272 |
with gr.Blocks(css=css) as demo:
|
| 273 |
+
# --- NEW ---
|
| 274 |
+
# Add a state component to store the list of clip paths
|
| 275 |
+
clips_state = gr.State([])
|
| 276 |
+
|
| 277 |
gr.Markdown("# LTX Video 0.9.8 13B Distilled")
|
| 278 |
+
gr.Markdown("Generate short video clips and stitch them together to create a longer animation.")
|
| 279 |
+
|
| 280 |
with gr.Row():
|
| 281 |
with gr.Column():
|
| 282 |
with gr.Tabs() as tabs:
|
| 283 |
with gr.Tab("image-to-video", id="i2v_tab") as image_tab:
|
| 284 |
+
# ... (tab content is unchanged) ...
|
| 285 |
video_i_hidden = gr.Textbox(visible=False)
|
| 286 |
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam", "clipboard"])
|
| 287 |
i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3)
|
| 288 |
+
i2v_button = gr.Button("Generate Image-to-Video Clip", variant="primary")
|
| 289 |
with gr.Tab("text-to-video", id="t2v_tab") as text_tab:
|
| 290 |
image_n_hidden = gr.Textbox(visible=False)
|
| 291 |
video_n_hidden = gr.Textbox(visible=False)
|
| 292 |
t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
|
| 293 |
+
t2v_button = gr.Button("Generate Text-to-Video Clip", variant="primary")
|
| 294 |
with gr.Tab("video-to-video", id="v2v_tab") as video_tab:
|
| 295 |
image_v_hidden = gr.Textbox(visible=False)
|
| 296 |
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"])
|
| 297 |
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=120, value=9, step=8, info="Must be N*8+1.")
|
| 298 |
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
|
| 299 |
+
v2v_button = gr.Button("Generate Video-to-Video Clip", variant="primary")
|
| 300 |
+
|
| 301 |
+
duration_input = gr.Slider(label="Clip Duration (seconds)", minimum=1.0, maximum=10.0, value=2.0, step=0.1)
|
| 302 |
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True)
|
| 303 |
+
|
| 304 |
with gr.Column():
|
| 305 |
+
output_video = gr.Video(label="Last Generated Clip", interactive=False)
|
| 306 |
use_last_frame_button = gr.Button("Use Last Frame as Input Image", visible=False)
|
| 307 |
+
|
| 308 |
+
# --- NEW ---
|
| 309 |
+
# Add UI components for stitching
|
| 310 |
+
with gr.Accordion("Stitching Controls", open=True):
|
| 311 |
+
clip_counter_display = gr.Markdown("Clips created: 0")
|
| 312 |
+
with gr.Row():
|
| 313 |
+
stitch_button = gr.Button("🎬 Stitch All Clips")
|
| 314 |
+
clear_button = gr.Button("🗑️ Clear All Clips")
|
| 315 |
+
final_video_output = gr.Video(label="Final Stitched Video", interactive=False)
|
| 316 |
+
|
| 317 |
with gr.Accordion("Advanced settings", open=False):
|
| 318 |
+
# ... (advanced settings are unchanged) ...
|
| 319 |
mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False)
|
| 320 |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
|
| 321 |
with gr.Row():
|
|
|
|
| 328 |
width_input = gr.Slider(label="Width", value=768, step=32, minimum=32, maximum=MAX_IMAGE_SIZE)
|
| 329 |
num_steps = gr.Slider(label="Steps", value=20, step=1, minimum=1, maximum=420)
|
| 330 |
fps = gr.Slider(label="FPS", value=30.0, step=1.0, minimum=4.0, maximum=60.0)
|
| 331 |
+
|
| 332 |
+
# ... (event handlers for uploads and tab changes are unchanged) ...
|
| 333 |
def handle_image_upload_for_dims(f, h, w):
|
| 334 |
if not f: return gr.update(value=h), gr.update(value=w)
|
| 335 |
img = Image.open(f)
|
|
|
|
| 347 |
image_tab.select(update_task_image, outputs=[mode])
|
| 348 |
text_tab.select(update_task_text, outputs=[mode])
|
| 349 |
video_tab.select(update_task_video, outputs=[mode])
|
| 350 |
+
|
| 351 |
+
# --- MODIFIED ---
|
| 352 |
+
# The inputs and outputs for the generate buttons now include the clips_state and clip_counter_display
|
| 353 |
+
base_inputs = [negative_prompt_input, clips_state,
|
| 354 |
+
height_input, width_input, mode, duration_input, frames_to_use,
|
| 355 |
+
seed_input, randomize_seed_input, guidance_scale_input, improve_texture, num_steps, fps]
|
| 356 |
+
|
| 357 |
+
t2v_inputs = [t2v_prompt] + base_inputs + [image_n_hidden, video_n_hidden]
|
| 358 |
+
i2v_inputs = [i2v_prompt] + base_inputs + [image_i2v, video_i_hidden]
|
| 359 |
+
v2v_inputs = [v2v_prompt] + base_inputs + [image_v_hidden, video_v2v]
|
| 360 |
+
|
| 361 |
+
gen_outputs = [output_video, seed_input, use_last_frame_button, clips_state, clip_counter_display]
|
| 362 |
+
|
| 363 |
hide_btn = lambda: gr.update(visible=False)
|
| 364 |
+
t2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=t2v_inputs, outputs=gen_outputs, api_name="text_to_video")
|
| 365 |
+
i2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=i2v_inputs, outputs=gen_outputs, api_name="image_to_video")
|
| 366 |
+
v2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=v2v_inputs, outputs=gen_outputs, api_name="video_to_video")
|
| 367 |
+
|
| 368 |
+
use_last_frame_button.click(fn=use_last_frame_as_input, inputs=[output_video], outputs=[image_i2v, tabs])
|
| 369 |
+
|
| 370 |
+
# --- NEW ---
|
| 371 |
+
# Add event handlers for the new stitching and clearing buttons
|
| 372 |
+
stitch_button.click(fn=stitch_videos, inputs=[clips_state], outputs=[final_video_output])
|
| 373 |
+
clear_button.click(fn=clear_clips, outputs=[clips_state, clip_counter_display, output_video, final_video_output])
|
| 374 |
+
|
| 375 |
|
| 376 |
if __name__ == "__main__":
|
| 377 |
if os.path.exists(models_dir): print(f"Model directory: {Path(models_dir).resolve()}")
|