Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,10 +14,6 @@ os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
|
|
| 14 |
import torch
|
| 15 |
# --- NEW ---
|
| 16 |
# Import the OpenCV library
|
| 17 |
-
import cv2
|
| 18 |
-
import gc
|
| 19 |
-
|
| 20 |
-
from image_gen_aux import UpscaleWithModel
|
| 21 |
|
| 22 |
torch.backends.cuda.matmul.allow_tf32 = False
|
| 23 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
@@ -29,6 +25,11 @@ torch.backends.cuda.preferred_blas_library="cublas"
|
|
| 29 |
torch.backends.cuda.preferred_linalg_library="cusolver"
|
| 30 |
torch.set_float32_matmul_precision("highest")
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
import gradio as gr
|
| 33 |
import numpy as np
|
| 34 |
import random
|
|
@@ -40,14 +41,30 @@ from PIL import Image
|
|
| 40 |
from huggingface_hub import hf_hub_download
|
| 41 |
import shutil
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
MAX_SEED = np.iinfo(np.int32).max
|
| 44 |
|
|
|
|
|
|
|
| 45 |
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
| 46 |
|
| 47 |
-
#import diffusers
|
| 48 |
-
from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL
|
| 49 |
print("Loading SDXL Image-to-Image pipeline...")
|
| 50 |
#vaeX = AutoencoderKL.from_pretrained('stabilityai/stable-diffusion-xl-refiner-1.0',subfolder='vae')
|
|
|
|
| 51 |
enhancer_pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
| 52 |
#"stabilityai/stable-diffusion-xl-base-1.0",
|
| 53 |
"ford442/stable-diffusion-xl-refiner-1.0-bf16",
|
|
@@ -57,24 +74,13 @@ enhancer_pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
|
| 57 |
requires_aesthetics_score=True,
|
| 58 |
#vae=None
|
| 59 |
)
|
|
|
|
| 60 |
#enhancer_pipeline.vae=vaeX
|
| 61 |
enhancer_pipeline.vae.set_default_attn_processor()
|
| 62 |
|
| 63 |
enhancer_pipeline.to("cpu")
|
| 64 |
print("SDXL Image-to-Image pipeline loaded successfully.")
|
| 65 |
|
| 66 |
-
from inference import (
|
| 67 |
-
create_ltx_video_pipeline,
|
| 68 |
-
create_latent_upsampler,
|
| 69 |
-
load_image_to_tensor_with_resize_and_crop,
|
| 70 |
-
seed_everething,
|
| 71 |
-
get_device,
|
| 72 |
-
calculate_padding,
|
| 73 |
-
load_media_file
|
| 74 |
-
)
|
| 75 |
-
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
|
| 76 |
-
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 77 |
-
|
| 78 |
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
|
| 79 |
with open(config_file_path, "r") as file:
|
| 80 |
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
|
|
@@ -83,7 +89,6 @@ LTX_REPO = "Lightricks/LTX-Video"
|
|
| 83 |
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
|
| 84 |
MAX_NUM_FRAMES = 900
|
| 85 |
|
| 86 |
-
# ... (model loading code is unchanged) ...
|
| 87 |
pipeline_instance = None
|
| 88 |
latent_upsampler_instance = None
|
| 89 |
models_dir = "downloaded_models_gradio_cpu_init"
|
|
@@ -120,21 +125,24 @@ def get_duration(*args, **kwargs):
|
|
| 120 |
if duration_ui > 5.0: return 100
|
| 121 |
return 90
|
| 122 |
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
@spaces.GPU(duration=45)
|
| 125 |
def enhance_frame(prompt, image_to_enhance: Image.Image):
|
| 126 |
try:
|
| 127 |
print("Moving enhancer pipeline to GPU...")
|
| 128 |
seed = random.randint(0, MAX_SEED)
|
| 129 |
-
generator
|
| 130 |
enhancer_pipeline.to("cuda",torch.bfloat16)
|
| 131 |
refine_prompt = prompt +" high detail, sharp focus, 8k, professional"
|
| 132 |
-
enhanced_image = enhancer_pipeline(prompt=refine_prompt, image=image_to_enhance, strength=0.1, generator=generator, num_inference_steps=
|
| 133 |
print("Frame enhancement successful.")
|
| 134 |
-
print("Doing super-resolution.")
|
| 135 |
-
with torch.no_grad():
|
| 136 |
-
upscale = upscaler(enhanced_image, tiling=True, tile_width=1024, tile_height=1024)
|
| 137 |
-
enhanced_image = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
| 138 |
except Exception as e:
|
| 139 |
print(f"Error during frame enhancement: {e}")
|
| 140 |
gr.Warning("Frame enhancement failed. Using original frame.")
|
|
@@ -147,7 +155,7 @@ def enhance_frame(prompt, image_to_enhance: Image.Image):
|
|
| 147 |
return enhanced_image
|
| 148 |
|
| 149 |
|
| 150 |
-
def use_last_frame_as_input(prompt, video_filepath, do_enhance):
|
| 151 |
if not video_filepath or not os.path.exists(video_filepath):
|
| 152 |
gr.Warning("No video clip available.")
|
| 153 |
return None, gr.update()
|
|
@@ -162,12 +170,18 @@ def use_last_frame_as_input(prompt, video_filepath, do_enhance):
|
|
| 162 |
# 1. Immediately yield the original frame to the UI
|
| 163 |
print("Displaying original last frame...")
|
| 164 |
yield pil_image, gr.update()
|
|
|
|
|
|
|
| 165 |
if do_enhance:
|
| 166 |
enhanced_image = enhance_frame(prompt, pil_image)
|
|
|
|
|
|
|
| 167 |
# 2. Yield the enhanced frame and switch the tab
|
| 168 |
print("Displaying enhanced frame and switching tab...")
|
| 169 |
yield enhanced_image, gr.update(selected="i2v_tab")
|
| 170 |
else:
|
|
|
|
|
|
|
| 171 |
# If not enhancing, just switch the tab
|
| 172 |
yield pil_image, gr.update(selected="i2v_tab")
|
| 173 |
except Exception as e:
|
|
@@ -210,6 +224,8 @@ def generate(prompt, negative_prompt, clips_list, input_image_filepath, input_vi
|
|
| 210 |
raise gr.Error("input_video_filepath is required for video-to-video mode")
|
| 211 |
if randomize_seed: seed_ui = random.randint(0, 2**32 - 1)
|
| 212 |
seed_everething(int(seed_ui))
|
|
|
|
|
|
|
| 213 |
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(round((max(1, round(duration_ui * fps)) - 1.0) / 8.0) * 8 + 1)))
|
| 214 |
actual_height, actual_width = int(height_ui), int(width_ui)
|
| 215 |
height_padded, width_padded = ((actual_height - 1) // 32 + 1) * 32, ((actual_width - 1) // 32 + 1) * 32
|
|
@@ -279,6 +295,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 279 |
duration_input = gr.Slider(label="Clip Duration (seconds)", minimum=1.0, maximum=10.0, value=2.0, step=0.1)
|
| 280 |
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True)
|
| 281 |
enhance_checkbox = gr.Checkbox(label="Improve Frame (SDXL Refiner)", value=True)
|
|
|
|
| 282 |
with gr.Column():
|
| 283 |
output_video = gr.Video(label="Last Generated Clip", interactive=False)
|
| 284 |
use_last_frame_button = gr.Button("Use Last Frame as Input Image", visible=False)
|
|
@@ -320,7 +337,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 320 |
t2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=t2v_inputs, outputs=gen_outputs, api_name="text_to_video")
|
| 321 |
i2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=i2v_inputs, outputs=gen_outputs, api_name="image_to_video")
|
| 322 |
v2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=v2v_inputs, outputs=gen_outputs, api_name="video_to_video")
|
| 323 |
-
use_last_frame_button.click(fn=use_last_frame_as_input, inputs=[i2v_prompt,output_video,enhance_checkbox], outputs=[image_i2v, tabs])
|
| 324 |
stitch_button.click(fn=stitch_videos, inputs=[clips_state], outputs=[final_video_output])
|
| 325 |
clear_button.click(fn=clear_clips, outputs=[clips_state, clip_counter_display, output_video, final_video_output])
|
| 326 |
if __name__ == "__main__":
|
|
|
|
| 14 |
import torch
|
| 15 |
# --- NEW ---
|
| 16 |
# Import the OpenCV library
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
torch.backends.cuda.matmul.allow_tf32 = False
|
| 19 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
|
|
|
| 25 |
torch.backends.cuda.preferred_linalg_library="cusolver"
|
| 26 |
torch.set_float32_matmul_precision("highest")
|
| 27 |
|
| 28 |
+
import cv2
|
| 29 |
+
import gc
|
| 30 |
+
|
| 31 |
+
from image_gen_aux import UpscaleWithModel
|
| 32 |
+
|
| 33 |
import gradio as gr
|
| 34 |
import numpy as np
|
| 35 |
import random
|
|
|
|
| 41 |
from huggingface_hub import hf_hub_download
|
| 42 |
import shutil
|
| 43 |
|
| 44 |
+
from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL
|
| 45 |
+
|
| 46 |
+
from inference import (
|
| 47 |
+
create_ltx_video_pipeline,
|
| 48 |
+
create_latent_upsampler,
|
| 49 |
+
load_image_to_tensor_with_resize_and_crop,
|
| 50 |
+
seed_everething,
|
| 51 |
+
get_device,
|
| 52 |
+
calculate_padding,
|
| 53 |
+
load_media_file
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
|
| 57 |
+
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 58 |
+
|
| 59 |
MAX_SEED = np.iinfo(np.int32).max
|
| 60 |
|
| 61 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 62 |
+
|
| 63 |
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
| 64 |
|
|
|
|
|
|
|
| 65 |
print("Loading SDXL Image-to-Image pipeline...")
|
| 66 |
#vaeX = AutoencoderKL.from_pretrained('stabilityai/stable-diffusion-xl-refiner-1.0',subfolder='vae')
|
| 67 |
+
|
| 68 |
enhancer_pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
| 69 |
#"stabilityai/stable-diffusion-xl-base-1.0",
|
| 70 |
"ford442/stable-diffusion-xl-refiner-1.0-bf16",
|
|
|
|
| 74 |
requires_aesthetics_score=True,
|
| 75 |
#vae=None
|
| 76 |
)
|
| 77 |
+
|
| 78 |
#enhancer_pipeline.vae=vaeX
|
| 79 |
enhancer_pipeline.vae.set_default_attn_processor()
|
| 80 |
|
| 81 |
enhancer_pipeline.to("cpu")
|
| 82 |
print("SDXL Image-to-Image pipeline loaded successfully.")
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
|
| 85 |
with open(config_file_path, "r") as file:
|
| 86 |
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
|
|
|
|
| 89 |
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
|
| 90 |
MAX_NUM_FRAMES = 900
|
| 91 |
|
|
|
|
| 92 |
pipeline_instance = None
|
| 93 |
latent_upsampler_instance = None
|
| 94 |
models_dir = "downloaded_models_gradio_cpu_init"
|
|
|
|
| 125 |
if duration_ui > 5.0: return 100
|
| 126 |
return 90
|
| 127 |
|
| 128 |
+
@spaces.GPU(duration=30)
|
| 129 |
+
def superres_image(image_to_enhance: Image.Image)
|
| 130 |
+
print("Doing super-resolution.")
|
| 131 |
+
with torch.no_grad():
|
| 132 |
+
upscale = upscaler(enhanced_image, tiling=True, tile_width=1024, tile_height=1024)
|
| 133 |
+
enhanced_image = upscale.resize((upscale.width // 2, upscale.height // 2), Image.LANCZOS)
|
| 134 |
+
return enhanced_image
|
| 135 |
+
|
| 136 |
@spaces.GPU(duration=45)
|
| 137 |
def enhance_frame(prompt, image_to_enhance: Image.Image):
|
| 138 |
try:
|
| 139 |
print("Moving enhancer pipeline to GPU...")
|
| 140 |
seed = random.randint(0, MAX_SEED)
|
| 141 |
+
generator.manual_seed(seed)
|
| 142 |
enhancer_pipeline.to("cuda",torch.bfloat16)
|
| 143 |
refine_prompt = prompt +" high detail, sharp focus, 8k, professional"
|
| 144 |
+
enhanced_image = enhancer_pipeline(prompt=refine_prompt, image=image_to_enhance, strength=0.1, generator=generator, num_inference_steps=160).images[0]
|
| 145 |
print("Frame enhancement successful.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
except Exception as e:
|
| 147 |
print(f"Error during frame enhancement: {e}")
|
| 148 |
gr.Warning("Frame enhancement failed. Using original frame.")
|
|
|
|
| 155 |
return enhanced_image
|
| 156 |
|
| 157 |
|
| 158 |
+
def use_last_frame_as_input(prompt, video_filepath, do_enhance, do_superres):
|
| 159 |
if not video_filepath or not os.path.exists(video_filepath):
|
| 160 |
gr.Warning("No video clip available.")
|
| 161 |
return None, gr.update()
|
|
|
|
| 170 |
# 1. Immediately yield the original frame to the UI
|
| 171 |
print("Displaying original last frame...")
|
| 172 |
yield pil_image, gr.update()
|
| 173 |
+
if do_superres:
|
| 174 |
+
pil_image = superres_image(pil_image)
|
| 175 |
if do_enhance:
|
| 176 |
enhanced_image = enhance_frame(prompt, pil_image)
|
| 177 |
+
if do_superres:
|
| 178 |
+
enhanced_image = superres_image(enhanced_image)
|
| 179 |
# 2. Yield the enhanced frame and switch the tab
|
| 180 |
print("Displaying enhanced frame and switching tab...")
|
| 181 |
yield enhanced_image, gr.update(selected="i2v_tab")
|
| 182 |
else:
|
| 183 |
+
if do_superres:
|
| 184 |
+
pil_image = superres_image(pil_image)
|
| 185 |
# If not enhancing, just switch the tab
|
| 186 |
yield pil_image, gr.update(selected="i2v_tab")
|
| 187 |
except Exception as e:
|
|
|
|
| 224 |
raise gr.Error("input_video_filepath is required for video-to-video mode")
|
| 225 |
if randomize_seed: seed_ui = random.randint(0, 2**32 - 1)
|
| 226 |
seed_everething(int(seed_ui))
|
| 227 |
+
seed = random.randint(0, MAX_SEED)
|
| 228 |
+
generator.manual_seed(seed)
|
| 229 |
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(round((max(1, round(duration_ui * fps)) - 1.0) / 8.0) * 8 + 1)))
|
| 230 |
actual_height, actual_width = int(height_ui), int(width_ui)
|
| 231 |
height_padded, width_padded = ((actual_height - 1) // 32 + 1) * 32, ((actual_width - 1) // 32 + 1) * 32
|
|
|
|
| 295 |
duration_input = gr.Slider(label="Clip Duration (seconds)", minimum=1.0, maximum=10.0, value=2.0, step=0.1)
|
| 296 |
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True)
|
| 297 |
enhance_checkbox = gr.Checkbox(label="Improve Frame (SDXL Refiner)", value=True)
|
| 298 |
+
superres_checkbox = gr.Checkbox(label="Upscale Frame (ClearRealityV1)", value=True)
|
| 299 |
with gr.Column():
|
| 300 |
output_video = gr.Video(label="Last Generated Clip", interactive=False)
|
| 301 |
use_last_frame_button = gr.Button("Use Last Frame as Input Image", visible=False)
|
|
|
|
| 337 |
t2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=t2v_inputs, outputs=gen_outputs, api_name="text_to_video")
|
| 338 |
i2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=i2v_inputs, outputs=gen_outputs, api_name="image_to_video")
|
| 339 |
v2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=v2v_inputs, outputs=gen_outputs, api_name="video_to_video")
|
| 340 |
+
use_last_frame_button.click(fn=use_last_frame_as_input, inputs=[i2v_prompt,output_video,enhance_checkbox, superres_checkbox], outputs=[image_i2v, tabs])
|
| 341 |
stitch_button.click(fn=stitch_videos, inputs=[clips_state], outputs=[final_video_output])
|
| 342 |
clear_button.click(fn=clear_clips, outputs=[clips_state, clip_counter_display, output_video, final_video_output])
|
| 343 |
if __name__ == "__main__":
|