PPC-SAM / models.py
forSubAnony's picture
v1
57abc33
import torch
import torch.nn as nn
from segment_anything.modeling import TwoWayTransformer, MaskDecoder
from typing import List, Tuple
import torch.nn.functional as F
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class MLP(nn.Module):
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
)
self.sigmoid_output = sigmoid_output
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = F.sigmoid(x)
return x
class MaskDecoderHQ(MaskDecoder):
def __init__(self, model_type):
super().__init__(transformer_dim=256,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=256,
mlp_dim=2048,
num_heads=8,
),
num_multimask_outputs=3,
activation=nn.GELU,
iou_head_depth= 3,
iou_head_hidden_dim= 256,)
assert model_type in ["vit_b","vit_l","vit_h"]
checkpoint_dict = {"vit_b":"pretrained_checkpoint/sam_vit_b_maskdecoder.pth",
"vit_l":"pretrained_checkpoint/sam_vit_l_maskdecoder.pth",
'vit_h':"pretrained_checkpoint/sam_vit_h_maskdecoder.pth"}
checkpoint_path = checkpoint_dict[model_type]
self.load_state_dict(torch.load(checkpoint_path))
print("HQ Decoder init from SAM MaskDecoder")
for n,p in self.named_parameters():
p.requires_grad = False
transformer_dim=256
vit_dim_dict = {"vit_b":768,"vit_l":1024,"vit_h":1280}
vit_dim = vit_dim_dict[model_type]
self.hf_token = nn.Embedding(1, transformer_dim)
self.hf_mlp = MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
self.num_mask_tokens = self.num_mask_tokens + 1
self.compress_vit_feat = nn.Sequential(
nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim),
nn.GELU(),
nn.ConvTranspose2d(transformer_dim, transformer_dim // 8, kernel_size=2, stride=2))
self.embedding_encoder = nn.Sequential(
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim // 4),
nn.GELU(),
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
)
self.embedding_maskfeature = nn.Sequential(
nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1),
LayerNorm2d(transformer_dim // 4),
nn.GELU(),
nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1))
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
hq_token_only: bool,
interm_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predict masks given image and prompt embeddings.
Arguments:
image_embeddings (torch.Tensor): the embeddings from the ViT image encoder
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
multimask_output (bool): Whether to return multiple masks or a single
mask.
Returns:
torch.Tensor: batched predicted hq masks
"""
vit_features = interm_embeddings[0].permute(0, 3, 1, 2) # early-layer ViT feature, after 1st global attention block in ViT
hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features)
batch_len = len(image_embeddings)
masks = []
iou_preds = []
for i_batch in range(batch_len):
mask, iou_pred = self.predict_masks(
image_embeddings=image_embeddings[i_batch].unsqueeze(0),
image_pe=image_pe[i_batch],
sparse_prompt_embeddings=sparse_prompt_embeddings[i_batch],
dense_prompt_embeddings=dense_prompt_embeddings[i_batch],
hq_feature = hq_features[i_batch].unsqueeze(0)
)
masks.append(mask)
iou_preds.append(iou_pred)
masks = torch.cat(masks,0)
iou_preds = torch.cat(iou_preds,0)
# Select the correct mask or masks for output
if multimask_output:
# mask with highest score
mask_slice = slice(1,self.num_mask_tokens-1)
iou_preds = iou_preds[:, mask_slice]
iou_preds, max_iou_idx = torch.max(iou_preds,dim=1)
iou_preds = iou_preds.unsqueeze(1)
masks_multi = masks[:, mask_slice, :, :]
masks_sam = masks_multi[torch.arange(masks_multi.size(0)),max_iou_idx].unsqueeze(1)
else:
# singale mask output, default
mask_slice = slice(0, 1)
masks_sam = masks[:,mask_slice]
masks_hq = masks[:,slice(self.num_mask_tokens-1, self.num_mask_tokens), :, :]
if hq_token_only:
return masks_hq
else:
return masks_sam, masks_hq
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
hq_feature: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Predicts masks. See 'forward' for more details."""
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# Expand per-image data in batch direction to be per-mask
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
src = src + dense_prompt_embeddings
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w)
upscaled_embedding_sam = self.output_upscaling(src)
upscaled_embedding_ours = self.embedding_maskfeature(upscaled_embedding_sam) + hq_feature
hyper_in_list: List[torch.Tensor] = []
for i in range(self.num_mask_tokens):
if i < 4:
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
else:
hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :]))
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w = upscaled_embedding_sam.shape
masks_sam = (hyper_in[:,:4] @ upscaled_embedding_sam.view(b, c, h * w)).view(b, -1, h, w)
masks_ours = (hyper_in[:,4:] @ upscaled_embedding_ours.view(b, c, h * w)).view(b, -1, h, w)
masks = torch.cat([masks_sam,masks_ours],dim=1)
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred