Spaces:
Runtime error
Runtime error
Commit
·
d341b67
1
Parent(s):
15ed2f3
Update app.py
Browse files
app.py
CHANGED
@@ -12,8 +12,15 @@ def get_predictions(img, threshold, box_color, text_color):
|
|
12 |
v8_frame = yolov8_detector.plot_bboxes(v8_results, img, float(threshold), box_color, text_color)
|
13 |
return v8_frame
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
with gr.Row():
|
18 |
with gr.Column():
|
19 |
image = gr.Image(shape=(824, 824), label="Input Image")
|
@@ -29,7 +36,7 @@ with gr.Blocks(title="Leaf Detection and Classification", theme=gr.themes.Monoch
|
|
29 |
|
30 |
with gr.Row():
|
31 |
with gr.Box():
|
32 |
-
v8_prediction = gr.Image(
|
33 |
|
34 |
btn.click(
|
35 |
get_predictions,
|
@@ -40,7 +47,4 @@ with gr.Blocks(title="Leaf Detection and Classification", theme=gr.themes.Monoch
|
|
40 |
with gr.Row():
|
41 |
gr.Examples(examples=examples, inputs=[image, confidence])
|
42 |
|
43 |
-
|
44 |
-
yolov8_detector = ObjectDetection('Yolov8')
|
45 |
-
|
46 |
interface.launch()
|
|
|
12 |
v8_frame = yolov8_detector.plot_bboxes(v8_results, img, float(threshold), box_color, text_color)
|
13 |
return v8_frame
|
14 |
|
15 |
+
# Load the YOLOv8 model for plant leaf detection and classification
|
16 |
+
yolov8_detector = ObjectDetection('Yolov8')
|
17 |
+
|
18 |
+
with gr.Blocks(title="Plant Leaf Detection and Classification", theme=gr.themes.DarkMode()) as interface:
|
19 |
+
# Add a header with a description of the app and the model used
|
20 |
+
gr.Markdown("# Plant Leaf Detection and Classification")
|
21 |
+
gr.Markdown("This app uses YOLOv8, a state-of-the-art object detection model, to detect and classify plant leaves. "
|
22 |
+
"The model can detect leaves and classify them into up to 45 different plant categories.")
|
23 |
+
|
24 |
with gr.Row():
|
25 |
with gr.Column():
|
26 |
image = gr.Image(shape=(824, 824), label="Input Image")
|
|
|
36 |
|
37 |
with gr.Row():
|
38 |
with gr.Box():
|
39 |
+
v8_prediction = gr.Image(label="YOLOv8 Prediction") # Display the output image in its original size
|
40 |
|
41 |
btn.click(
|
42 |
get_predictions,
|
|
|
47 |
with gr.Row():
|
48 |
gr.Examples(examples=examples, inputs=[image, confidence])
|
49 |
|
|
|
|
|
|
|
50 |
interface.launch()
|