Spaces:
Runtime error
Runtime error
import cv2 | |
import IPython | |
from PIL import ImageColor | |
from ultralytics import YOLO | |
class ObjectDetection: | |
def __init__(self, model_name='Yolov8'): | |
self.model_name = model_name | |
self.model = self.load_model() | |
self.classes = self.model.names | |
self.device = 'cpu' | |
def load_model(self): | |
model = YOLO(f"weights/{self.model_name}_best.pt") | |
return model | |
def v8_score_frame(self, frame): | |
results = self.model(frame) | |
labels = [] | |
confidences = [] | |
coords = [] | |
for result in results: | |
boxes = result.boxes.cpu().numpy() | |
label = boxes.cls | |
conf = boxes.conf | |
coord = boxes.xyxy | |
labels.extend(label) | |
confidences.extend(conf) | |
coords.extend(coord) | |
return labels, confidences, coords | |
def get_coords(self, frame, row): | |
return int(row[0]), int(row[1]), int(row[2]), int(row[3]) | |
def class_to_label(self, x): | |
return self.classes[int(x)] | |
def get_color(self, code): | |
rgb = ImageColor.getcolor(code, "RGB") | |
return rgb | |
def plot_bboxes(self, results, frame, threshold=0.5, box_color='red', text_color='white'): | |
labels, conf, coord = results | |
frame = frame.copy() | |
box_color = self.get_color(box_color) | |
text_color = self.get_color(text_color) | |
for i in range(len(labels)): | |
if conf[i] >= threshold: | |
x1, y1, x2, y2 = self.get_coords(frame, coord[i]) | |
class_name = self.class_to_label(labels[i]) | |
cv2.rectangle(frame, (x1, y1), (x2, y2), box_color, 2) | |
cv2.putText(frame, f"{class_name} - {conf[i]*100:.2f}%", (x1, y1), cv2.FONT_HERSHEY_COMPLEX, 0.5, text_color) | |
return frame | |