Spaces:
Runtime error
Runtime error
custom vision imports
Browse files- .gitignore +2 -1
- app.py +156 -17
- input_object_detection.png +0 -0
- output.jpg +0 -0
- requirements.txt +0 -0
.gitignore
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
.ipynb_checkpoints
|
| 2 |
flagged
|
| 3 |
-
telecom_object_detection.ipynb
|
|
|
|
|
|
| 1 |
.ipynb_checkpoints
|
| 2 |
flagged
|
| 3 |
+
telecom_object_detection.ipynb
|
| 4 |
+
.env
|
app.py
CHANGED
|
@@ -1,13 +1,117 @@
|
|
| 1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: telecom_object_detection.ipynb.
|
| 2 |
|
| 3 |
# %% auto 0
|
| 4 |
-
__all__ = ['title', 'css', 'urls', '
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# %% telecom_object_detection.ipynb 2
|
| 7 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from pathlib import Path
|
| 9 |
|
| 10 |
-
# %% telecom_object_detection.ipynb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
title = """<h1 id="title">Telecom Object Detection with Azure Custom Vision</h1>"""
|
| 12 |
|
| 13 |
css = '''
|
|
@@ -16,15 +120,49 @@ h1#title {
|
|
| 16 |
}
|
| 17 |
'''
|
| 18 |
|
| 19 |
-
# %% telecom_object_detection.ipynb
|
| 20 |
-
import numpy as np
|
| 21 |
-
import gradio as gr
|
| 22 |
-
|
| 23 |
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]
|
|
|
|
|
|
|
| 24 |
|
|
|
|
| 25 |
def flip_text(): pass
|
| 26 |
def flip_image(): pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
|
|
|
| 28 |
with gr.Blocks(css=css) as demo:
|
| 29 |
|
| 30 |
gr.Markdown(title)
|
|
@@ -32,18 +170,16 @@ with gr.Blocks(css=css) as demo:
|
|
| 32 |
with gr.Tabs():
|
| 33 |
with gr.TabItem("Image Upload"):
|
| 34 |
with gr.Row():
|
| 35 |
-
image_input = gr.Image()
|
| 36 |
-
image_output = gr.Image()
|
|
|
|
| 37 |
with gr.Row():
|
| 38 |
"""example_images = gr.Dataset(components=[img_input],
|
| 39 |
samples=[[path.as_posix()] for path in sorted(Path('images').rglob('*.jpg'))]
|
| 40 |
)"""
|
| 41 |
-
example_images = gr.Examples(
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
)
|
| 45 |
-
|
| 46 |
-
|
| 47 |
image_button = gr.Button("Detect")
|
| 48 |
|
| 49 |
with gr.TabItem("Image URL"):
|
|
@@ -55,8 +191,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 55 |
example_url = gr.Dataset(components=[url_input], samples=[[str(url)] for url in urls])
|
| 56 |
url_button = gr.Button("Detect")
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
image_button.click(
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
demo.launch()
|
|
|
|
| 1 |
# AUTOGENERATED! DO NOT EDIT! File to edit: telecom_object_detection.ipynb.
|
| 2 |
|
| 3 |
# %% auto 0
|
| 4 |
+
__all__ = ['prediction_endpoint', 'prediction_key', 'project_id', 'model_name', 'title', 'css', 'urls', 'imgs', 'img_samples',
|
| 5 |
+
'fig2img', 'custom_vision_detect_objects', 'flip_text', 'flip_image', 'set_example_url', 'set_example_image',
|
| 6 |
+
'detect_objects']
|
| 7 |
|
| 8 |
# %% telecom_object_detection.ipynb 2
|
| 9 |
import gradio as gr
|
| 10 |
+
import numpy as np
|
| 11 |
+
import os
|
| 12 |
+
import io
|
| 13 |
+
|
| 14 |
+
import requests
|
| 15 |
+
|
| 16 |
from pathlib import Path
|
| 17 |
|
| 18 |
+
# %% telecom_object_detection.ipynb 6
|
| 19 |
+
from azure.cognitiveservices.vision.customvision.prediction import CustomVisionPredictionClient
|
| 20 |
+
from msrest.authentication import ApiKeyCredentials
|
| 21 |
+
from matplotlib import pyplot as plt
|
| 22 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 23 |
+
from dotenv import load_dotenv
|
| 24 |
+
|
| 25 |
+
# %% telecom_object_detection.ipynb 11
|
| 26 |
+
def fig2img(fig):
|
| 27 |
+
buf = io.BytesIO()
|
| 28 |
+
fig.savefig(buf)
|
| 29 |
+
buf.seek(0)
|
| 30 |
+
img = Image.open(buf)
|
| 31 |
+
return img
|
| 32 |
+
|
| 33 |
+
def custom_vision_detect_objects(image_file: Path):
|
| 34 |
+
dpi = 100
|
| 35 |
+
|
| 36 |
+
# Get Configuration Settings
|
| 37 |
+
load_dotenv()
|
| 38 |
+
prediction_endpoint = os.getenv('PredictionEndpoint')
|
| 39 |
+
prediction_key = os.getenv('PredictionKey')
|
| 40 |
+
project_id = os.getenv('ProjectID')
|
| 41 |
+
model_name = os.getenv('ModelName')
|
| 42 |
+
|
| 43 |
+
# Authenticate a client for the training API
|
| 44 |
+
credentials = ApiKeyCredentials(in_headers={"Prediction-key": prediction_key})
|
| 45 |
+
prediction_client = CustomVisionPredictionClient(endpoint=prediction_endpoint, credentials=credentials)
|
| 46 |
+
|
| 47 |
+
# Load image and get height, width and channels
|
| 48 |
+
#image_file = 'produce.jpg'
|
| 49 |
+
print('Detecting objects in', image_file)
|
| 50 |
+
image = Image.open(image_file)
|
| 51 |
+
h, w, ch = np.array(image).shape
|
| 52 |
+
|
| 53 |
+
# Detect objects in the test image
|
| 54 |
+
with open(image_file, mode="rb") as image_data:
|
| 55 |
+
results = prediction_client.detect_image(project_id, model_name, image_data)
|
| 56 |
+
|
| 57 |
+
# Create a figure for the results
|
| 58 |
+
fig = plt.figure(figsize=(w/dpi, h/dpi))
|
| 59 |
+
plt.axis('off')
|
| 60 |
+
|
| 61 |
+
# Display the image with boxes around each detected object
|
| 62 |
+
draw = ImageDraw.Draw(image)
|
| 63 |
+
lineWidth = int(w/800)
|
| 64 |
+
color = 'cyan'
|
| 65 |
+
|
| 66 |
+
for prediction in results.predictions:
|
| 67 |
+
# Only show objects with a > 50% probability
|
| 68 |
+
if (prediction.probability*100) > 50:
|
| 69 |
+
# Box coordinates and dimensions are proportional - convert to absolutes
|
| 70 |
+
left = prediction.bounding_box.left * w
|
| 71 |
+
top = prediction.bounding_box.top * h
|
| 72 |
+
height = prediction.bounding_box.height * h
|
| 73 |
+
width = prediction.bounding_box.width * w
|
| 74 |
+
|
| 75 |
+
# Draw the box
|
| 76 |
+
points = ((left,top), (left+width,top), (left+width,top+height), (left,top+height), (left,top))
|
| 77 |
+
draw.line(points, fill=color, width=lineWidth)
|
| 78 |
+
|
| 79 |
+
# Add the tag name and probability
|
| 80 |
+
#plt.annotate(prediction.tag_name + ": {0:.2f}%".format(prediction.probability * 100),(left,top), backgroundcolor=color)
|
| 81 |
+
plt.annotate(
|
| 82 |
+
prediction.tag_name + ": {0:.0f}%".format(prediction.probability * 100),
|
| 83 |
+
(left, top-1.372*h/dpi),
|
| 84 |
+
backgroundcolor=color,
|
| 85 |
+
fontsize=max(w/dpi, h/dpi),
|
| 86 |
+
fontfamily='monospace'
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
plt.imshow(image)
|
| 90 |
+
plt.tight_layout(pad=0)
|
| 91 |
+
|
| 92 |
+
return fig2img(fig)
|
| 93 |
+
|
| 94 |
+
outputfile = 'output.jpg'
|
| 95 |
+
fig.savefig(outputfile)
|
| 96 |
+
print('Resulabsts saved in ', outputfile)
|
| 97 |
+
|
| 98 |
+
# %% telecom_object_detection.ipynb 13
|
| 99 |
+
load_dotenv()
|
| 100 |
+
prediction_endpoint = os.getenv('PredictionEndpoint')
|
| 101 |
+
prediction_key = os.getenv('PredictionKey')
|
| 102 |
+
project_id = os.getenv('ProjectID')
|
| 103 |
+
model_name = os.getenv('ModelName')
|
| 104 |
+
print(prediction_endpoint)
|
| 105 |
+
print(prediction_key)
|
| 106 |
+
print(project_id)
|
| 107 |
+
print(model_name)
|
| 108 |
+
#print('/'*10)
|
| 109 |
+
#print(credentials)
|
| 110 |
+
#print(prediction_client)
|
| 111 |
+
#print('/'*10)
|
| 112 |
+
#print(h, w, ch)
|
| 113 |
+
|
| 114 |
+
# %% telecom_object_detection.ipynb 15
|
| 115 |
title = """<h1 id="title">Telecom Object Detection with Azure Custom Vision</h1>"""
|
| 116 |
|
| 117 |
css = '''
|
|
|
|
| 120 |
}
|
| 121 |
'''
|
| 122 |
|
| 123 |
+
# %% telecom_object_detection.ipynb 16
|
|
|
|
|
|
|
|
|
|
| 124 |
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]
|
| 125 |
+
imgs = [path.as_posix() for path in sorted(Path('images').rglob('*.jpg'))]
|
| 126 |
+
img_samples = [[path.as_posix()] for path in sorted(Path('images').rglob('*.jpg'))]
|
| 127 |
|
| 128 |
+
# %% telecom_object_detection.ipynb 17
|
| 129 |
def flip_text(): pass
|
| 130 |
def flip_image(): pass
|
| 131 |
+
def set_example_url(example: list) -> dict:
|
| 132 |
+
return gr.Textbox.update(value=example[0])
|
| 133 |
+
|
| 134 |
+
def set_example_image(example: list) -> dict:
|
| 135 |
+
#print(example)
|
| 136 |
+
#print(gr.Image.update(value=example[0]))
|
| 137 |
+
return gr.Image.update(value=example[0])
|
| 138 |
+
|
| 139 |
+
#def detect_objects(url_input, image_input):
|
| 140 |
+
|
| 141 |
+
def detect_objects(image_input:Image):
|
| 142 |
+
#if validators.url(url_input):
|
| 143 |
+
# image = Image.open(requests.get(url_input, stream=True).raw)
|
| 144 |
+
#elif image_input:
|
| 145 |
+
# image = image_input
|
| 146 |
+
print(image_input)
|
| 147 |
+
print(image_input.size)
|
| 148 |
+
w, h = image_input.size
|
| 149 |
+
|
| 150 |
+
if max(w, h) > 1_200:
|
| 151 |
+
#factor = int(max(w, h) / 1_200)
|
| 152 |
+
#image_input = image_input.reduce(factor)
|
| 153 |
+
factor = 1_200 / max(w, h)
|
| 154 |
+
size = (int(w*factor), int(h*factor))
|
| 155 |
+
image_input = image_input.resize(size, resample=Image.Resampling.BILINEAR)
|
| 156 |
+
|
| 157 |
+
resized_image_path = "input_object_detection.png"
|
| 158 |
+
print(image_input.save(resized_image_path))
|
| 159 |
+
|
| 160 |
+
#return fig2img(fig)
|
| 161 |
+
return image_input
|
| 162 |
+
#return custom_vision_detect_objects(Path(filename[0]))
|
| 163 |
+
#return custom_vision_detect_objects(resized_image_path))
|
| 164 |
|
| 165 |
+
# %% telecom_object_detection.ipynb 18
|
| 166 |
with gr.Blocks(css=css) as demo:
|
| 167 |
|
| 168 |
gr.Markdown(title)
|
|
|
|
| 170 |
with gr.Tabs():
|
| 171 |
with gr.TabItem("Image Upload"):
|
| 172 |
with gr.Row():
|
| 173 |
+
image_input = gr.Image(type='pil')
|
| 174 |
+
image_output = gr.Image(shape=(650,650))
|
| 175 |
+
|
| 176 |
with gr.Row():
|
| 177 |
"""example_images = gr.Dataset(components=[img_input],
|
| 178 |
samples=[[path.as_posix()] for path in sorted(Path('images').rglob('*.jpg'))]
|
| 179 |
)"""
|
| 180 |
+
#example_images = gr.Examples(examples=imgs, inputs=image_input)
|
| 181 |
+
example_images = gr.Dataset(components=[image_input], samples=img_samples)
|
| 182 |
+
|
|
|
|
|
|
|
|
|
|
| 183 |
image_button = gr.Button("Detect")
|
| 184 |
|
| 185 |
with gr.TabItem("Image URL"):
|
|
|
|
| 191 |
example_url = gr.Dataset(components=[url_input], samples=[[str(url)] for url in urls])
|
| 192 |
url_button = gr.Button("Detect")
|
| 193 |
|
| 194 |
+
url_button.click(detect_objects, inputs=[url_input], outputs=img_output_from_url)
|
| 195 |
+
image_button.click(detect_objects, inputs=[image_input], outputs=image_output)
|
| 196 |
+
#image_button.click(detect_objects, inputs=[example_images], outputs=image_output)
|
| 197 |
+
|
| 198 |
+
example_url.click(fn=set_example_url, inputs=[example_url], outputs=[url_input])
|
| 199 |
+
example_images.click(fn=set_example_image, inputs=[example_images], outputs=[image_input])
|
| 200 |
|
| 201 |
demo.launch()
|
input_object_detection.png
ADDED
|
output.jpg
ADDED
|
requirements.txt
ADDED
|
File without changes
|