fmsfm commited on
Commit
7ce4544
·
1 Parent(s): 49c0a52
MODNet ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 28165a451e4610c9d77cfdf925a94610bb2810fb
RCFPyTorch0 ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 0f1f2486e5cca2f0c564fc87bdd87b182bfb03c1
__pycache__/web.cpython-37.pyc ADDED
Binary file (2.96 kB). View file
 
app.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import os.path as osp
4
+ import cv2
5
+ import argparse
6
+ import torch
7
+ #from torch.utils.data import DataLoader
8
+ import torchvision
9
+ from RCFPyTorch0.dataset import BSDS_Dataset
10
+ from RCFPyTorch0.models import RCF
11
+ import gradio as gr
12
+ from PIL import Image
13
+ import sys
14
+ import torch.nn as nn
15
+ import torch.nn.functional as F
16
+ import torchvision.transforms as transforms
17
+ from MODNet.src.models.modnet import MODNet
18
+ # 网页制作
19
+ import cv2
20
+
21
+
22
+ def single_scale_test(image):
23
+ ref_size = 512
24
+ # define image to tensor transform
25
+ im_transform = transforms.Compose(
26
+ [
27
+ transforms.ToTensor(),
28
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
29
+ ]
30
+ )
31
+
32
+ # create MODNet and load the pre-trained ckpt
33
+ modnet = MODNet(backbone_pretrained=False)
34
+ modnet = nn.DataParallel(modnet).cuda()
35
+ modnet.load_state_dict(torch.load('MODNet/pretrained/modnet_photographic.ckpt'))
36
+ modnet.eval()
37
+ # 注:程序中的数字仅表示某张输入图片尺寸,如1080x1440,此处只为记住其转换过程。
38
+ # inference images
39
+ # im_names = os.listdir(args.input_path)
40
+ # for im_name in im_names:
41
+ # print('Process image: {0}'.format(im_name))
42
+ # read image
43
+
44
+ # unify image channels to 3
45
+ image = np.asarray(image)
46
+ if len(image.shape) == 2:
47
+ image = image[:, :, None]
48
+ if image.shape[2] == 1:
49
+ image = np.repeat(image, 3, axis=2)
50
+ elif image.shape[2] == 4:
51
+ image = image[:, :, 0:3]
52
+ im_org = image # 保存numpy原始数组 (1080,1440,3)
53
+ # convert image to PyTorch tensor
54
+ image = Image.fromarray(image)
55
+ image = im_transform(image)
56
+ # add mini-batch dim
57
+ image = image[None, :, :, :]
58
+ # resize image for input
59
+ im_b, im_c, im_h, im_w = image.shape
60
+ if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size:
61
+ if im_w >= im_h:
62
+ im_rh = ref_size
63
+ im_rw = int(im_w / im_h * ref_size)
64
+ elif im_w < im_h:
65
+ im_rw = ref_size
66
+ im_rh = int(im_h / im_w * ref_size)
67
+ else:
68
+ im_rh = im_h
69
+ im_rw = im_w
70
+ im_rw = im_rw - im_rw % 32
71
+ im_rh = im_rh - im_rh % 32
72
+ image = F.interpolate(image, size=(im_rh, im_rw), mode='area')
73
+
74
+ # inference
75
+ _, _, matte = modnet(image.cuda(), True) # 从模型获得的 matte ([1,1,512, 672])
76
+
77
+ # resize and save matte,foreground picture
78
+ matte = F.interpolate(matte, size=(im_h, im_w), mode='area') #内插,扩展到([1,1,1080,1440]) 范围[0,1]
79
+ matte = matte[0][0].data.cpu().numpy() # torch 张量转换成numpy (1080, 1440)
80
+ # matte_name = im_name.split('.')[0] + '_matte.png'
81
+ # Image.fromarray(((matte * 255).astype('uint8')), mode='L').save(os.path.join(args.output_path, matte_name))
82
+ matte_org = np.repeat(np.asarray(matte)[:, :, None], 3, axis=2) # 扩展到 (1080, 1440, 3) 以便和im_org计算
83
+
84
+ foreground = im_org * matte_org + np.full(im_org.shape, 255) * (1 - matte_org) # 计算前景,获得抠像
85
+ # fg_name = im_name.split('.')[0] + '_fg.png'
86
+ Image.fromarray(((foreground).astype('uint8')), mode='RGB').save(os.path.join('MODNet/output-img', 'fg_name.png'))
87
+ output = Image.open(os.path.join('MODNet/output-img', 'fg_name.png'))
88
+ image = np.array(output)
89
+
90
+ model = RCF().cuda()
91
+ checkpoint = torch.load("RCFPyTorch0/bsds500_pascal_model.pth")
92
+ model.load_state_dict(checkpoint)
93
+ model.eval()
94
+ # if not osp.isdir(save_dir):
95
+ # os.makedirs(save_dir)
96
+ # for idx, image in enumerate(test_loader):
97
+ image = torch.from_numpy(image).float().permute(2,0,1).unsqueeze(0)
98
+ image = image.cuda()
99
+ _, _, H, W = image.shape
100
+ results = model(image)
101
+ all_res = torch.zeros((len(results), 1, H, W))
102
+ for i in range(len(results)):
103
+ all_res[i, 0, :, :] = results[i]
104
+ #filename = osp.splitext(test_list[idx])[0]
105
+ torchvision.utils.save_image(1 - all_res, osp.join('RCFPyTorch0/results/RCF', 'result.jpg'))
106
+ fuse_res = torch.squeeze(results[1].detach()).cpu().numpy()
107
+ fuse_res = ((1 - fuse_res) * 255).astype(np.uint8)
108
+ cv2.imwrite(osp.join("RCFPyTorch0/results/RCF", 'result_ss.png'), fuse_res)
109
+ #print('\rRunning single-scale test [%d/%d]' % (idx + 1, len(test_loader)), end='')
110
+ #print('Running single-scale test done')
111
+ output = Image.open(os.path.join('RCFPyTorch0/results/RCF', 'result_ss.png'))
112
+ return output
113
+
114
+ parser = argparse.ArgumentParser(description='PyTorch Testing')
115
+ parser.add_argument('--gpu', default='0', type=str, help='GPU ID')
116
+ #parser.add_argument('--checkpoint', default=None, type=str, help='path to latest checkpoint')
117
+ #parser.add_argument('--save-dir', help='output folder', default='results/RCF')
118
+ #parser.add_argument('--dataset', help='root folder of dataset', default='data/HED-BSDS')
119
+ args = parser.parse_args()
120
+
121
+ os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
122
+ os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
123
+
124
+ #if not osp.isdir(args.save_dir):
125
+ # os.makedirs(args.save_dir)
126
+
127
+ #test_dataset = BSDS_Dataset(root=args.dataset, split='test')
128
+ #test_loader = DataLoader(test_dataset, batch_size=1, num_workers=1, drop_last=False, shuffle=False)
129
+ #test_list = [osp.split(i.rstrip())[1] for i in test_dataset.file_list]
130
+ #assert len(test_list) == len(test_loader)
131
+
132
+
133
+
134
+ #if osp.isfile(args.checkpoint):
135
+ # print("=> loading checkpoint from '{}'".format(args.checkpoint))
136
+ # checkpoint = torch.load(args.checkpoint)
137
+ # model.load_state_dict(checkpoint)
138
+ # print("=> checkpoint loaded")
139
+ #else:
140
+ # print("=> no checkpoint found at '{}'".format(args.checkpoint))
141
+
142
+ #print('Performing the testing...')
143
+
144
+
145
+ interface = gr.Interface(fn=single_scale_test, inputs="image", outputs="image")
146
+ interface.launch()
flagged/image/tmpo2k6btjc.jpg ADDED
flagged/log.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ image,output,flag,username,timestamp
2
+ D:\code\MOD_RCF\flagged\image\tmpo2k6btjc.jpg,,,,2022-11-28 23:39:55.725173