PictureLinear / app.py
fmsfm's picture
Upload app.py
1591fde
import os
import numpy as np
import os.path as osp
import cv2
import argparse
import torch
#from torch.utils.data import DataLoader
import torchvision
from RCFPyTorch0.dataset import BSDS_Dataset
from RCFPyTorch0.models import RCF
import gradio as gr
from PIL import Image
import sys
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
from MODNet.src.models.modnet import MODNet
# 网页制作
import cv2
def single_scale_test(image):
ref_size = 512
# define image to tensor transform
im_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]
)
# create MODNet and load the pre-trained ckpt
modnet = MODNet(backbone_pretrained=False)
modnet = nn.DataParallel(modnet).cuda()
modnet.load_state_dict(torch.load('MODNet/pretrained/modnet_photographic.ckpt'))
modnet.eval()
# 注:程序中的数字仅表示某张输入图片尺寸,如1080x1440,此处只为记住其转换过程。
# inference images
# im_names = os.listdir(args.input_path)
# for im_name in im_names:
# print('Process image: {0}'.format(im_name))
# read image
# unify image channels to 3
image = np.asarray(image)
if len(image.shape) == 2:
image = image[:, :, None]
if image.shape[2] == 1:
image = np.repeat(image, 3, axis=2)
elif image.shape[2] == 4:
image = image[:, :, 0:3]
im_org = image # 保存numpy原始数组 (1080,1440,3)
# convert image to PyTorch tensor
image = Image.fromarray(image)
image = im_transform(image)
# add mini-batch dim
image = image[None, :, :, :]
# resize image for input
im_b, im_c, im_h, im_w = image.shape
if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size:
if im_w >= im_h:
im_rh = ref_size
im_rw = int(im_w / im_h * ref_size)
elif im_w < im_h:
im_rw = ref_size
im_rh = int(im_h / im_w * ref_size)
else:
im_rh = im_h
im_rw = im_w
im_rw = im_rw - im_rw % 32
im_rh = im_rh - im_rh % 32
image = F.interpolate(image, size=(im_rh, im_rw), mode='area')
# inference
_, _, matte = modnet(image.cuda(), True) # 从模型获得的 matte ([1,1,512, 672])
# resize and save matte,foreground picture
matte = F.interpolate(matte, size=(im_h, im_w), mode='area') #内插,扩展到([1,1,1080,1440]) 范围[0,1]
matte = matte[0][0].data.cpu().numpy() # torch 张量转换成numpy (1080, 1440)
# matte_name = im_name.split('.')[0] + '_matte.png'
# Image.fromarray(((matte * 255).astype('uint8')), mode='L').save(os.path.join(args.output_path, matte_name))
matte_org = np.repeat(np.asarray(matte)[:, :, None], 3, axis=2) # 扩展到 (1080, 1440, 3) 以便和im_org计算
foreground = im_org * matte_org + np.full(im_org.shape, 255) * (1 - matte_org) # 计算前景,获得抠像
# fg_name = im_name.split('.')[0] + '_fg.png'
output = Image.fromarray(((foreground).astype('uint8')), mode='RGB')
image = np.asarray(output)
model = RCF().cuda()
checkpoint = torch.load("RCFPyTorch0/bsds500_pascal_model.pth")
model.load_state_dict(checkpoint)
model.eval()
# if not osp.isdir(save_dir):
# os.makedirs(save_dir)
# for idx, image in enumerate(test_loader):
image = torch.from_numpy(image).float().permute(2,0,1).unsqueeze(0)
image = image.cuda()
_, _, H, W = image.shape
results = model(image)
all_res = torch.zeros((len(results), 1, H, W))
for i in range(len(results)):
all_res[i, 0, :, :] = results[i]
#filename = osp.splitext(test_list[idx])[0]
#torchvision.utils.save_image(1 - all_res, osp.join('RCFPyTorch0/results/RCF', 'result.jpg'))
fuse_res = torch.squeeze(results[1].detach()).cpu().numpy()
fuse_res = ((1 - fuse_res) * 255).astype('uint8')
#cv2.imwrite(osp.join("RCFPyTorch0/results/RCF", 'result_ss.png'), fuse_res)
#print('\rRunning single-scale test [%d/%d]' % (idx + 1, len(test_loader)), end='')
#print('Running single-scale test done')
#output = Image.open(os.path.join('RCFPyTorch0/results/RCF', 'result_ss.png'))
output = Image.fromarray((fuse_res).astype('uint8'))
return output
parser = argparse.ArgumentParser(description='PyTorch Testing')
parser.add_argument('--gpu', default='0', type=str, help='GPU ID')
#parser.add_argument('--checkpoint', default=None, type=str, help='path to latest checkpoint')
#parser.add_argument('--save-dir', help='output folder', default='results/RCF')
#parser.add_argument('--dataset', help='root folder of dataset', default='data/HED-BSDS')
args = parser.parse_args()
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
#if not osp.isdir(args.save_dir):
# os.makedirs(args.save_dir)
#test_dataset = BSDS_Dataset(root=args.dataset, split='test')
#test_loader = DataLoader(test_dataset, batch_size=1, num_workers=1, drop_last=False, shuffle=False)
#test_list = [osp.split(i.rstrip())[1] for i in test_dataset.file_list]
#assert len(test_list) == len(test_loader)
#if osp.isfile(args.checkpoint):
# print("=> loading checkpoint from '{}'".format(args.checkpoint))
# checkpoint = torch.load(args.checkpoint)
# model.load_state_dict(checkpoint)
# print("=> checkpoint loaded")
#else:
# print("=> no checkpoint found at '{}'".format(args.checkpoint))
#print('Performing the testing...')
interface = gr.Interface(fn=single_scale_test, inputs="image", outputs="image")
interface.launch()