PictureLinear / MODNet /src /trainer.py
fmsfm's picture
Upload 37 files
555da6f
raw
history blame
12.2 kB
import math
import scipy
import numpy as np
from scipy.ndimage import grey_dilation, grey_erosion
import torch
import torch.nn as nn
import torch.nn.functional as F
__all__ = [
'supervised_training_iter',
'soc_adaptation_iter',
]
# ----------------------------------------------------------------------------------
# Tool Classes/Functions
# ----------------------------------------------------------------------------------
class GaussianBlurLayer(nn.Module):
""" Add Gaussian Blur to a 4D tensors
This layer takes a 4D tensor of {N, C, H, W} as input.
The Gaussian blur will be performed in given channel number (C) splitly.
"""
def __init__(self, channels, kernel_size):
"""
Arguments:
channels (int): Channel for input tensor
kernel_size (int): Size of the kernel used in blurring
"""
super(GaussianBlurLayer, self).__init__()
self.channels = channels
self.kernel_size = kernel_size
assert self.kernel_size % 2 != 0
self.op = nn.Sequential(
nn.ReflectionPad2d(math.floor(self.kernel_size / 2)),
nn.Conv2d(channels, channels, self.kernel_size,
stride=1, padding=0, bias=None, groups=channels)
)
self._init_kernel()
def forward(self, x):
"""
Arguments:
x (torch.Tensor): input 4D tensor
Returns:
torch.Tensor: Blurred version of the input
"""
if not len(list(x.shape)) == 4:
print('\'GaussianBlurLayer\' requires a 4D tensor as input\n')
exit()
elif not x.shape[1] == self.channels:
print('In \'GaussianBlurLayer\', the required channel ({0}) is'
'not the same as input ({1})\n'.format(self.channels, x.shape[1]))
exit()
return self.op(x)
def _init_kernel(self):
sigma = 0.3 * ((self.kernel_size - 1) * 0.5 - 1) + 0.8
n = np.zeros((self.kernel_size, self.kernel_size))
i = math.floor(self.kernel_size / 2)
n[i, i] = 1
kernel = scipy.ndimage.gaussian_filter(n, sigma)
for name, param in self.named_parameters():
param.data.copy_(torch.from_numpy(kernel))
# ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------
# MODNet Training Functions
# ----------------------------------------------------------------------------------
blurer = GaussianBlurLayer(1, 3).cuda()
def supervised_training_iter(
modnet, optimizer, image, trimap, gt_matte,
semantic_scale=10.0, detail_scale=10.0, matte_scale=1.0):
""" Supervised training iteration of MODNet
This function trains MODNet for one iteration in a labeled dataset.
Arguments:
modnet (torch.nn.Module): instance of MODNet
optimizer (torch.optim.Optimizer): optimizer for supervised training
image (torch.autograd.Variable): input RGB image
its pixel values should be normalized
trimap (torch.autograd.Variable): trimap used to calculate the losses
its pixel values can be 0, 0.5, or 1
(foreground=1, background=0, unknown=0.5)
gt_matte (torch.autograd.Variable): ground truth alpha matte
its pixel values are between [0, 1]
semantic_scale (float): scale of the semantic loss
NOTE: please adjust according to your dataset
detail_scale (float): scale of the detail loss
NOTE: please adjust according to your dataset
matte_scale (float): scale of the matte loss
NOTE: please adjust according to your dataset
Returns:
semantic_loss (torch.Tensor): loss of the semantic estimation [Low-Resolution (LR) Branch]
detail_loss (torch.Tensor): loss of the detail prediction [High-Resolution (HR) Branch]
matte_loss (torch.Tensor): loss of the semantic-detail fusion [Fusion Branch]
Example:
import torch
from src.models.modnet import MODNet
from src.trainer import supervised_training_iter
bs = 16 # batch size
lr = 0.01 # learn rate
epochs = 40 # total epochs
modnet = torch.nn.DataParallel(MODNet()).cuda()
optimizer = torch.optim.SGD(modnet.parameters(), lr=lr, momentum=0.9)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=int(0.25 * epochs), gamma=0.1)
dataloader = CREATE_YOUR_DATALOADER(bs) # NOTE: please finish this function
for epoch in range(0, epochs):
for idx, (image, trimap, gt_matte) in enumerate(dataloader):
semantic_loss, detail_loss, matte_loss = \
supervised_training_iter(modnet, optimizer, image, trimap, gt_matte)
lr_scheduler.step()
"""
global blurer
# set the model to train mode and clear the optimizer
modnet.train()
optimizer.zero_grad()
# forward the model
pred_semantic, pred_detail, pred_matte = modnet(image, False)
# calculate the boundary mask from the trimap
boundaries = (trimap < 0.5) + (trimap > 0.5)
# calculate the semantic loss
gt_semantic = F.interpolate(gt_matte, scale_factor=1/16, mode='bilinear')
gt_semantic = blurer(gt_semantic)
semantic_loss = torch.mean(F.mse_loss(pred_semantic, gt_semantic))
semantic_loss = semantic_scale * semantic_loss
# calculate the detail loss
pred_boundary_detail = torch.where(boundaries, trimap, pred_detail)
gt_detail = torch.where(boundaries, trimap, gt_matte)
detail_loss = torch.mean(F.l1_loss(pred_boundary_detail, gt_detail))
detail_loss = detail_scale * detail_loss
# calculate the matte loss
pred_boundary_matte = torch.where(boundaries, trimap, pred_matte)
matte_l1_loss = F.l1_loss(pred_matte, gt_matte) + 4.0 * F.l1_loss(pred_boundary_matte, gt_matte)
matte_compositional_loss = F.l1_loss(image * pred_matte, image * gt_matte) \
+ 4.0 * F.l1_loss(image * pred_boundary_matte, image * gt_matte)
matte_loss = torch.mean(matte_l1_loss + matte_compositional_loss)
matte_loss = matte_scale * matte_loss
# calculate the final loss, backward the loss, and update the model
loss = semantic_loss + detail_loss + matte_loss
loss.backward()
optimizer.step()
# for test
return semantic_loss, detail_loss, matte_loss
def soc_adaptation_iter(
modnet, backup_modnet, optimizer, image,
soc_semantic_scale=100.0, soc_detail_scale=1.0):
""" Self-Supervised sub-objective consistency (SOC) adaptation iteration of MODNet
This function fine-tunes MODNet for one iteration in an unlabeled dataset.
Note that SOC can only fine-tune a converged MODNet, i.e., MODNet that has been
trained in a labeled dataset.
Arguments:
modnet (torch.nn.Module): instance of MODNet
backup_modnet (torch.nn.Module): backup of the trained MODNet
optimizer (torch.optim.Optimizer): optimizer for self-supervised SOC
image (torch.autograd.Variable): input RGB image
its pixel values should be normalized
soc_semantic_scale (float): scale of the SOC semantic loss
NOTE: please adjust according to your dataset
soc_detail_scale (float): scale of the SOC detail loss
NOTE: please adjust according to your dataset
Returns:
soc_semantic_loss (torch.Tensor): loss of the semantic SOC
soc_detail_loss (torch.Tensor): loss of the detail SOC
Example:
import copy
import torch
from src.models.modnet import MODNet
from src.trainer import soc_adaptation_iter
bs = 1 # batch size
lr = 0.00001 # learn rate
epochs = 10 # total epochs
modnet = torch.nn.DataParallel(MODNet()).cuda()
modnet = LOAD_TRAINED_CKPT() # NOTE: please finish this function
optimizer = torch.optim.Adam(modnet.parameters(), lr=lr, betas=(0.9, 0.99))
dataloader = CREATE_YOUR_DATALOADER(bs) # NOTE: please finish this function
for epoch in range(0, epochs):
backup_modnet = copy.deepcopy(modnet)
for idx, (image) in enumerate(dataloader):
soc_semantic_loss, soc_detail_loss = \
soc_adaptation_iter(modnet, backup_modnet, optimizer, image)
"""
global blurer
# set the backup model to eval mode
backup_modnet.eval()
# set the main model to train mode and freeze its norm layers
modnet.train()
modnet.module.freeze_norm()
# clear the optimizer
optimizer.zero_grad()
# forward the main model
pred_semantic, pred_detail, pred_matte = modnet(image, False)
# forward the backup model
with torch.no_grad():
_, pred_backup_detail, pred_backup_matte = backup_modnet(image, False)
# calculate the boundary mask from `pred_matte` and `pred_semantic`
pred_matte_fg = (pred_matte.detach() > 0.1).float()
pred_semantic_fg = (pred_semantic.detach() > 0.1).float()
pred_semantic_fg = F.interpolate(pred_semantic_fg, scale_factor=16, mode='bilinear')
pred_fg = pred_matte_fg * pred_semantic_fg
n, c, h, w = pred_matte.shape
np_pred_fg = pred_fg.data.cpu().numpy()
np_boundaries = np.zeros([n, c, h, w])
for sdx in range(0, n):
sample_np_boundaries = np_boundaries[sdx, 0, ...]
sample_np_pred_fg = np_pred_fg[sdx, 0, ...]
side = int((h + w) / 2 * 0.05)
dilated = grey_dilation(sample_np_pred_fg, size=(side, side))
eroded = grey_erosion(sample_np_pred_fg, size=(side, side))
sample_np_boundaries[np.where(dilated - eroded != 0)] = 1
np_boundaries[sdx, 0, ...] = sample_np_boundaries
boundaries = torch.tensor(np_boundaries).float().cuda()
# sub-objectives consistency between `pred_semantic` and `pred_matte`
# generate pseudo ground truth for `pred_semantic`
downsampled_pred_matte = blurer(F.interpolate(pred_matte, scale_factor=1/16, mode='bilinear'))
pseudo_gt_semantic = downsampled_pred_matte.detach()
pseudo_gt_semantic = pseudo_gt_semantic * (pseudo_gt_semantic > 0.01).float()
# generate pseudo ground truth for `pred_matte`
pseudo_gt_matte = pred_semantic.detach()
pseudo_gt_matte = pseudo_gt_matte * (pseudo_gt_matte > 0.01).float()
# calculate the SOC semantic loss
soc_semantic_loss = F.mse_loss(pred_semantic, pseudo_gt_semantic) + F.mse_loss(downsampled_pred_matte, pseudo_gt_matte)
soc_semantic_loss = soc_semantic_scale * torch.mean(soc_semantic_loss)
# NOTE: using the formulas in our paper to calculate the following losses has similar results
# sub-objectives consistency between `pred_detail` and `pred_backup_detail` (on boundaries only)
backup_detail_loss = boundaries * F.l1_loss(pred_detail, pred_backup_detail, reduction='none')
backup_detail_loss = torch.sum(backup_detail_loss, dim=(1,2,3)) / torch.sum(boundaries, dim=(1,2,3))
backup_detail_loss = torch.mean(backup_detail_loss)
# sub-objectives consistency between pred_matte` and `pred_backup_matte` (on boundaries only)
backup_matte_loss = boundaries * F.l1_loss(pred_matte, pred_backup_matte, reduction='none')
backup_matte_loss = torch.sum(backup_matte_loss, dim=(1,2,3)) / torch.sum(boundaries, dim=(1,2,3))
backup_matte_loss = torch.mean(backup_matte_loss)
soc_detail_loss = soc_detail_scale * (backup_detail_loss + backup_matte_loss)
# calculate the final loss, backward the loss, and update the model
loss = soc_semantic_loss + soc_detail_loss
loss.backward()
optimizer.step()
return soc_semantic_loss, soc_detail_loss
# ----------------------------------------------------------------------------------