tavr_project / app.py
fmegahed's picture
Update app.py
f237326
raw
history blame
9.57 kB
# pip install pycaret
from pandas.api.types import CategoricalDtype
import pandas as pd
import jinja2
from pycaret.classification import *
import imblearn as im
import sklearn
import gradio as gr
import numpy as np
import io
import pickle
import requests
import urllib.request
import shutil
# url = 'https://raw.githubusercontent.com/fmegahed/tavr_paper/main/data/example_data2.csv'
# download = requests.get(url).content
ex_data =pd.read_csv('example_data2.csv')
ex_data = ex_data.to_numpy()
ex_data = ex_data.tolist()
def predict(age, female, race, elective, aweekend, zipinc_qrtl, hosp_region, hosp_division, hosp_locteach,
hosp_bedsize, h_contrl, pay, anemia, atrial_fibrillation,
cancer, cardiac_arrhythmias, carotid_artery_disease,
chronic_kidney_disease, chronic_pulmonary_disease, coagulopathy,
depression, diabetes_mellitus, drug_abuse, dyslipidemia, endocarditis,
family_history, fluid_and_electrolyte_disorder, heart_failure,
hypertension, known_cad, liver_disease, obesity, peripheral_vascular_disease,
prior_cabg, prior_icd, prior_mi, prior_pci, prior_ppm, prior_tia_stroke,
pulmonary_circulation_disorder, smoker, valvular_disease, weight_loss,
endovascular_tavr, transapical_tavr):
df = pd.DataFrame.from_dict({
'age': [age], 'female': [female], 'race': [race], 'elective': elective,
'aweekend': [aweekend], 'zipinc_qrtl': [zipinc_qrtl],
'hosp_region': [hosp_region], 'hosp_division': [hosp_division],
'hosp_locteach': [hosp_locteach], 'hosp_bedsize': [hosp_bedsize],
'h_contrl': [h_contrl], 'pay': [pay], 'anemia': [anemia],
'atrial_fibrillation': [atrial_fibrillation], 'cancer': [cancer],
'cardiac_arrhythmias': [cardiac_arrhythmias],
'carotid_artery_disease': [carotid_artery_disease],
'chronic_kidney_disease': [chronic_kidney_disease],
'chronic_pulmonary_disease': [chronic_pulmonary_disease],
'coagulopathy': [coagulopathy], 'depression': [depression],
'diabetes_mellitus': [diabetes_mellitus], 'drug_abuse': [drug_abuse],
'dyslipidemia': [dyslipidemia], 'endocarditis': [endocarditis],
'family_history': [family_history], 'fluid_and_electrolyte_disorder': [fluid_and_electrolyte_disorder],
'heart_failure': [heart_failure], 'hypertension': [hypertension],
'known_cad': [known_cad], 'liver_disease': [liver_disease],
'obesity': [obesity], 'peripheral_vascular_disease': [peripheral_vascular_disease],
'prior_cabg': [prior_cabg], 'prior_icd': [prior_icd], 'prior_mi': [prior_mi],
'prior_pci': [prior_pci], 'prior_ppm': [prior_ppm], 'prior_tia_stroke': [prior_tia_stroke],
'pulmonary_circulation_disorder': [pulmonary_circulation_disorder],
'smoker': [smoker], 'valvular_disease': [valvular_disease],
'weight_loss': [weight_loss], 'endovascular_tavr': [endovascular_tavr],
'transapical_tavr': [transapical_tavr]
})
df.loc[:, df.dtypes == 'object'] =\
df.select_dtypes(['object'])\
.apply(lambda x: x.astype('category'))
# converting ordinal column to ordinal
ordinal_cat = CategoricalDtype(categories = ['FirstQ', 'SecondQ', 'ThirdQ', 'FourthQ'], ordered = True)
df.zipinc_qrtl = df.zipinc_qrtl.astype(ordinal_cat)
with urllib.request.urlopen('https://github.com/fmegahed/tavr_paper/blob/main/data/final_model.pkl?raw=true') as response, open('final_model.pkl', 'wb') as out_file:
shutil.copyfileobj(response, out_file)
model = load_model('final_model')
pred = predict_model(model, df, raw_score=True)
return {'Death %': round(100*pred['Score_Yes'][0], 2),
'Survival %': round(100*pred['Score_No'][0], 2),
'Predicting Death Outcome:': pred['Label'][0]}
# Defining the containers for each input
age = gr.inputs.Slider(minimum=18, maximum=100, default=60, label="Age")
female = gr.inputs.Dropdown(choices=["Female", "Male"],label = 'Sex')
race = gr.inputs.Dropdown(choices=['Asian or Pacific Islander', 'Black', 'Hispanic', 'Native American', 'White', 'Other'], label = 'Race')
elective = gr.inputs.Radio(choices=['Elective', 'NonElective'], label = 'Elective')
aweekend = gr.inputs.Radio(choices=["No", "Yes"], label = 'Weekend')
zipinc_qrtl = gr.inputs.Radio(choices=['FirstQ', 'SecondQ', 'ThirdQ', 'FourthQ'], label = 'Zip Income Quartile')
hosp_region = gr.inputs.Radio(choices=['Midwest', 'Northeast', 'South', 'West'], label = 'Hospital Region')
hosp_division = gr.inputs.Radio(choices=['New England', 'Middle Atlantic', 'East North Central', 'West North Central', 'South Atlantic', 'East South Central', 'West South Central', 'Mountain', 'Pacific'], label = 'Hospital Division')
hosp_locteach = gr.inputs.Radio(choices=['Urban teaching', 'Urban nonteaching', 'Rural'], label= 'Hospital Location/Teaching')
hosp_bedsize = gr.inputs.Radio(choices=['Small', 'Medium', 'Large'], label= 'Hospital Bedsize')
h_contrl = gr.inputs.Radio(choices= ['Government_nonfederal', 'Private_invest_own', 'Private_not_profit'], label = 'Hospital Control')
pay = gr.inputs.Dropdown(choices= ['Private insurance', 'Medicare', 'Medicaid', 'Self-pay', 'No charge', 'Other'], label = 'Payee')
anemia = gr.inputs.Radio(choices=["No", "Yes"], label = 'Anemia')
atrial_fibrillation = gr.inputs.Radio(choices=["No", "Yes"], label = 'Atrial Fibrillation')
cancer = gr.inputs.Radio(choices=["No", "Yes"], label = 'Cancer')
cardiac_arrhythmias = gr.inputs.Radio(choices=["No", "Yes"], label = 'Cardiac Arrhythmias')
carotid_artery_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Carotid Artery Disease')
chronic_kidney_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Chronic Kidney Disease')
chronic_pulmonary_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Chronic Pulmonary Disease')
coagulopathy = gr.inputs.Radio(choices=["No", "Yes"], label = 'Coagulopathy')
depression = gr.inputs.Radio(choices=["No", "Yes"], label = 'Depression')
diabetes_mellitus = gr.inputs.Radio(choices=["No", "Yes"], label = 'Diabetes Mellitus')
drug_abuse = gr.inputs.Radio(choices=["No", "Yes"], label = 'Drug Abuse')
dyslipidemia = gr.inputs.Radio(choices=["No", "Yes"], label = 'Dyslipidemia')
endocarditis = gr.inputs.Radio(choices=["No", "Yes"], label = 'Endocarditis')
family_history = gr.inputs.Radio(choices=["No", "Yes"], label = 'Family History')
fluid_and_electrolyte_disorder = gr.inputs.Radio(choices=["No", "Yes"], label = 'Fluid and Electrolyte Disorder')
heart_failure = gr.inputs.Radio(choices=["No", "Yes"], label = 'Heart Failure')
hypertension = gr.inputs.Radio(choices=["No", "Yes"], label = 'Hypertension')
known_cad = gr.inputs.Radio(choices=["No", "Yes"], label = 'Known CAD')
liver_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Liver Disease')
obesity = gr.inputs.Radio(choices=["No", "Yes"], label = 'Obesity')
peripheral_vascular_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Peripheral Vascular Disease')
prior_cabg = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior CABG')
prior_icd = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior ICD')
prior_mi = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior MI')
prior_pci = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior PCI')
prior_ppm = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior PPM')
prior_tia_stroke = gr.inputs.Radio(choices=["No", "Yes"], label = 'Prior TIA Stroke')
pulmonary_circulation_disorder = gr.inputs.Radio(choices=["No", "Yes"], label = 'Pulmonary Circulation Disorder')
smoker = gr.inputs.Radio(choices=["No", "Yes"], label = 'Smoker')
valvular_disease = gr.inputs.Radio(choices=["No", "Yes"], label = 'Valvular Disease')
weight_loss = gr.inputs.Radio(choices=["No", "Yes"], label = 'Weight Loss')
endovascular_tavr = gr.inputs.Radio(choices=["No", "Yes"], label = 'Endovascular TAVR')
transapical_tavr = gr.inputs.Radio(choices=["No", "Yes"], label = 'Transapical TAVR', default= 'Yes')
# Defining and launching the interface
iface = gr.Interface(
fn = predict,
inputs = [age, female, race, elective, aweekend, zipinc_qrtl, hosp_region, hosp_division, hosp_locteach,
hosp_bedsize, h_contrl, pay, anemia, atrial_fibrillation,
cancer, cardiac_arrhythmias, carotid_artery_disease,
chronic_kidney_disease, chronic_pulmonary_disease, coagulopathy,
depression, diabetes_mellitus, drug_abuse, dyslipidemia, endocarditis,
family_history, fluid_and_electrolyte_disorder, heart_failure,
hypertension, known_cad, liver_disease, obesity, peripheral_vascular_disease,
prior_cabg, prior_icd, prior_mi, prior_pci, prior_ppm, prior_tia_stroke,
pulmonary_circulation_disorder, smoker, valvular_disease, weight_loss,
endovascular_tavr, transapical_tavr],
outputs = 'text',
live=True,
title = "Predicting In-Hospital Mortality After TAVR Using Preoperative Variables and Penalized Logistic Regression",
description = "<font size='4'>The app below utilizes the <b>finalized logistic regression model with an l2 penalty based on the manuscript by Alhwiti, Aldrugh, and Megahed</b>. The manuscript is under review at Scientific Reports. The data used for model building is all TAVR procedures between 2012 and 2019, as reported in the HCUP NIS database. <br><br> The app's purpose is to provide evidence-based clinical support for interventional cardiology.</font>",
css = 'https://bootswatch.com/5/journal/bootstrap.css')
iface.launch()