Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
+
from timeit import default_timer as timer
|
5 |
+
|
6 |
+
username = "fmagot01" ## Complete your username
|
7 |
+
model_id = f"{username}/vit-base-beans"
|
8 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
+
pipe = pipeline("image-classification", model=model_id, device=device)
|
10 |
+
|
11 |
+
# def predict_trunc(filepath):
|
12 |
+
# preprocessed = pipe.preprocess(filepath)
|
13 |
+
# truncated = pipe.feature_extractor.pad(preprocessed,truncation=True, max_length = 16_000*30)
|
14 |
+
# model_outputs = pipe.forward(truncated)
|
15 |
+
# outputs = pipe.postprocess(model_outputs)
|
16 |
+
|
17 |
+
# return outputs
|
18 |
+
|
19 |
+
|
20 |
+
def classify_image(filepath):
|
21 |
+
"""
|
22 |
+
Goes from
|
23 |
+
[{'score': 0.8339303731918335, 'label': 'healthy'},
|
24 |
+
{'score': 0.11914275586605072, 'label': 'bean_rust'},]
|
25 |
+
to
|
26 |
+
{"health": 0.8339303731918335, "bean_rust":0.11914275586605072}
|
27 |
+
"""
|
28 |
+
start_time = timer()
|
29 |
+
preds = pipe(filepath)
|
30 |
+
|
31 |
+
outputs = {}
|
32 |
+
pred_time = round(timer() - start_time, 5)
|
33 |
+
for p in preds:
|
34 |
+
outputs[p["label"]] = p["score"]
|
35 |
+
return outputs, pred_time
|
36 |
+
|
37 |
+
|
38 |
+
title = "Classifier of Leaf Images"
|
39 |
+
description = """
|
40 |
+
This demo shows the application of the fintuned image classification model using [Beans](https://huggingface.co/datasets/beans). You can upload your own image or select an image from the examples below.
|
41 |
+
|
42 |
+
It will output 3 different labels: Healthy, Bean Rust and Angular leaf Spot. Bean rust is a type of disease that leaves can get. Angular leaf spot refers to irregular spots that a leaf can get (not a disease) and healthy leaves do not have any of these.
|
43 |
+
"""
|
44 |
+
|
45 |
+
filenames = ['leaftest1.jpeg', "leaftest2.jpeg", "leaftest3.jpeg"]
|
46 |
+
filenames = [[f"./{f}"] for f in filenames]
|
47 |
+
demo = gr.Interface(
|
48 |
+
fn=classify_image,
|
49 |
+
inputs=gr.Image(type="filepath"),
|
50 |
+
outputs=[gr.outputs.Label(label="Predictions"),
|
51 |
+
gr.Number(label="Prediction time (s)")
|
52 |
+
],
|
53 |
+
title=title,
|
54 |
+
description=description,
|
55 |
+
examples=filenames,
|
56 |
+
)
|
57 |
+
demo.launch()
|