Spaces:
Runtime error
Runtime error
import dataclasses | |
import json | |
import logging | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Dict, List, Optional | |
import numpy as np | |
import torch | |
from transformers import ( | |
AutoModelForSeq2SeqLM, | |
AutoTokenizer, | |
T5Tokenizer, | |
BartTokenizer, | |
HfArgumentParser, | |
DataCollator, | |
TrainingArguments, | |
set_seed, | |
) | |
from trainer import Trainer | |
from data_collator import T2TDataCollator | |
from utils import freeze_embeds, assert_not_all_frozen | |
MODEL_TYPE_TO_TOKENIZER = { | |
"t5": T5Tokenizer, | |
"bart": BartTokenizer, | |
} | |
logger = logging.getLogger(__name__) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
model_type: str = field(metadata={"help": "One of 't5', 'bart'"}) | |
tokenizer_name_or_path: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
) | |
label_smoothing: Optional[float] = field( | |
default=0, | |
metadata={"help": "label smoothing rate, set to > 0 if you want to enable lable smoothing"} | |
) | |
freeze_embeds: bool = field( | |
default=False, | |
metadata={"help": "Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."} | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
train_file_path: str = field( | |
metadata={"help": "Path for cached train dataset"}, | |
) | |
valid_file_path: str = field( | |
metadata={"help": "Path for cached valid dataset"}, | |
) | |
data_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Path for data files"}, | |
) | |
task: Optional[str] = field( | |
default=None, | |
metadata={"help": "Which task 'qa', 'qg', 'e2e_qg', 'ans_ext', 'multi'. 'multi' means 'qa', 'qg', 'ans_ext' tasks"}, | |
) | |
qg_format: Optional[str] = field( | |
default='prepend_qg_format', | |
metadata={"help": "How to format inputs for que generation, 'highlight_qg_format' or 'prepend_qg_format'"}, | |
) | |
max_source_length: Optional[int] = field( | |
default=512, | |
metadata={"help": "Max input length for the source text"}, | |
) | |
max_target_length: Optional[int] = field( | |
default=32, | |
metadata={"help": "Max input length for the target text"}, | |
) | |
def main(args_file=None): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if (len(sys.argv) == 2 and sys.argv[1].endswith(".json")) or args_file is not None: | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
args_file_path = os.path.abspath(sys.argv[1]) if args_file is None else args_file | |
model_args, data_args, training_args = parser.parse_json_file(json_file=args_file_path) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
assert model_args.model_type in list(MODEL_TYPE_TO_TOKENIZER.keys()), "model type should be 't5' or 'bart'" | |
if ( | |
os.path.exists(training_args.output_dir) | |
and os.listdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." | |
) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, | |
) | |
logger.warning( | |
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
training_args.local_rank, | |
training_args.device, | |
training_args.n_gpu, | |
bool(training_args.local_rank != -1), | |
training_args.fp16, | |
) | |
logger.info("Training/evaluation parameters %s", training_args) | |
# Set seed | |
set_seed(training_args.seed) | |
# Set project name | |
os.environ["WANDB_PROJECT"] = "question-generation" | |
# Load pretrained model and tokenizer | |
# | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
tokenizer_cls = MODEL_TYPE_TO_TOKENIZER[model_args.model_type] | |
tokenizer = tokenizer_cls.from_pretrained( | |
model_args.tokenizer_name_or_path if model_args.tokenizer_name_or_path else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
) | |
model = AutoModelForSeq2SeqLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
) | |
model.resize_token_embeddings(len(tokenizer)) | |
if model_args.freeze_embeds: | |
logger.info("freezing embeddings of the model") | |
freeze_embeds(model) | |
assert_not_all_frozen(model) | |
# Get datasets | |
logger.info('loading dataset') | |
train_dataset = torch.load(data_args.train_file_path) if training_args.do_train else None | |
valid_dataset = torch.load(data_args.valid_file_path) if training_args.do_eval else None | |
logger.info('finished loading dataset') | |
# Initialize data_collator | |
data_collator = T2TDataCollator( | |
tokenizer=tokenizer, | |
model_type=model_args.model_type, | |
mode="training", | |
using_tpu=training_args.tpu_num_cores is not None | |
) | |
# Initialize our Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=valid_dataset, | |
data_collator=data_collator, | |
prediction_loss_only=True, | |
label_smoothing=model_args.label_smoothing | |
) | |
# disable wandb console logs | |
logging.getLogger('wandb.run_manager').setLevel(logging.WARNING) | |
# Training | |
if training_args.do_train: | |
trainer.train( | |
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None | |
) | |
trainer.save_model() | |
# For convenience, we also re-save the tokenizer to the same directory, | |
# so that you can share your model easily on huggingface.co/models =) | |
if trainer.is_world_master(): | |
tokenizer.save_pretrained(training_args.output_dir) | |
# Evaluation | |
results = {} | |
if training_args.do_eval and training_args.local_rank in [-1, 0]: | |
logger.info("*** Evaluate ***") | |
eval_output = trainer.evaluate() | |
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") | |
with open(output_eval_file, "w") as writer: | |
logger.info("***** Eval results *****") | |
for key in sorted(eval_output.keys()): | |
logger.info(" %s = %s", key, str(eval_output[key])) | |
writer.write("%s = %s\n" % (key, str(eval_output[key]))) | |
results.update(eval_output) | |
return results | |
def _mp_fn(index): | |
# For xla_spawn (TPUs) | |
main() | |
def run_qg(args_dict): | |
with open("args.json", 'w') as f: | |
json.dump(args_dict, f) | |
main(args_file="args.json") | |
if __name__ == "__main__": | |
main() |