flynn-chen
all
97ec4dd
raw
history blame
1.87 kB
from typing import Callable, Dict, Iterable, List
from torch import nn
# these functions are taken from transformers repo
def grad_status(model: nn.Module) -> Iterable:
return (par.requires_grad for par in model.parameters())
def freeze_params(model: nn.Module):
for par in model.parameters():
par.requires_grad = False
def freeze_embeds(model: nn.Module):
"""Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."""
try:
freeze_params(model.model.shared)
for d in [model.model.encoder, model.model.decoder]:
freeze_params(d.embed_positions)
freeze_params(d.embed_tokens)
except AttributeError:
freeze_params(model.shared)
for d in [model.encoder, model.decoder]:
freeze_params(d.embed_tokens)
def assert_not_all_frozen(model):
model_grads: List[bool] = list(grad_status(model))
npars = len(model_grads)
assert any(model_grads), f"none of {npars} weights require grad"
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100):
"""From fairseq"""
if target.dim() == lprobs.dim() - 1:
target = target.unsqueeze(-1)
nll_loss = -lprobs.gather(dim=-1, index=target)
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
if ignore_index is not None:
pad_mask = target.eq(ignore_index)
nll_loss.masked_fill_(pad_mask, 0.0)
smooth_loss.masked_fill_(pad_mask, 0.0)
bs = pad_mask.long().sum()
else:
nll_loss = nll_loss.squeeze(-1)
smooth_loss = smooth_loss.squeeze(-1)
bs = lprobs.shape[0]
nll_loss = nll_loss.sum() # mean()? Scared to break other math.
smooth_loss = smooth_loss.sum()
eps_i = epsilon / lprobs.size(-1)
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss / bs, nll_loss / bs