flynn-chen
all
97ec4dd
raw
history blame
6.9 kB
import os
import logging
from dataclasses import dataclass, field
from typing import Dict, List, Optional
import torch
import nlp
from transformers import T5Tokenizer, BartTokenizer, HfArgumentParser
logger = logging.getLogger(__name__)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task: str = field(
metadata={"help": "Which task 'qa', 'qg', 'e2e_qg', 'ans_ext', 'multi'. 'multi' means 'qa', 'qg', 'ans_ext' tasks"},
)
model_type: str = field(metadata={"help": "One of 't5', 'bart'"})
dataset_path: Optional[str] = field(
default="data/squad_multitask",
metadata={"help": "Path for dataset directory"},
)
train_file_name: Optional[str] = field(
default=None,
metadata={"help": "name for cached train dataset"},
)
valid_file_name: Optional[str] = field(
default=None,
metadata={"help": "name for cached valid dataset"},
)
valid_for_qg_only: bool = field(
default=False,
metadata={"help": "For multitask dataset valid split should contain only qg task or all tasks."}
)
qg_format: Optional[str] = field(
default='highlight_qg_format',
metadata={"help": "How to format inputs for que generation, 'highlight_qg_format' or 'prepend_qg_format'"},
)
max_source_length: Optional[int] = field(
default=512,
metadata={"help": "Max input length for the source text"},
)
max_target_length: Optional[int] = field(
default=32,
metadata={"help": "Max input length for the target text"},
)
class DataProcessor:
def __init__(self, tokenizer, model_type="t5", max_source_length=512, max_target_length=32):
self.tokenizer = tokenizer
self.max_source_length = max_source_length
self.max_target_length = max_target_length
self.model_type = model_type
self.hl_token = "<hl>"
if model_type == "t5":
self.sep_token = "<sep>"
elif model_type == "bart":
self.sep_token = "<sep>"
else:
self.sep_token = "[SEP]"
def process(self, dataset):
if self.model_type == "t5":
dataset = dataset.map(self._add_eos_examples)
dataset = dataset.map(self._add_special_tokens)
dataset = dataset.map(self._convert_to_features, batched=True)
return dataset
def _add_eos_examples(self, example):
example['source_text'] = example['source_text'] + " </s>"
example['target_text'] = example['target_text'] + " </s>"
return example
def _add_special_tokens(self, example):
example['source_text'] = example['source_text'].replace("{hl_token}", self.hl_token)
example['target_text'] = example['target_text'].replace("{sep_token}", self.sep_token)
return example
# tokenize the examples
def _convert_to_features(self, example_batch):
source_encoding = self.tokenizer.batch_encode_plus(
example_batch['source_text'],
max_length=self.max_source_length,
padding='max_length',
pad_to_max_length=True,
truncation=True,
)
target_encoding = self.tokenizer.batch_encode_plus(
example_batch['target_text'],
max_length=self.max_target_length,
padding='max_length',
pad_to_max_length=True,
truncation=True,
)
encodings = {
'source_ids': source_encoding['input_ids'],
'target_ids': target_encoding['input_ids'],
'attention_mask': source_encoding['attention_mask'],
}
return encodings
def filter_qa(example):
return example['task'] == 'qa'
def filter_qg(example):
return example['task'] == 'qg'
def filter_e2e_qg(example):
return example['task'] == 'e2e_qg'
def filter_ans_ext(example):
return example['task'] == 'ans_ext'
def filter_multi(example):
return example['task'] != 'e2e_qg'
TASK_TO_FILTER_FN = {
'qa': filter_qa,
'qg': filter_qg,
'e2e_qg': filter_e2e_qg,
'ans_ext': filter_ans_ext,
'multi': filter_multi
}
def main():
parser = HfArgumentParser((DataTrainingArguments,))
data_args = parser.parse_args_into_dataclasses()[0]
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO
)
if data_args.model_type == 't5':
tokenizer = T5Tokenizer.from_pretrained("t5-base")
else:
tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
tokenizer.add_tokens(['<sep>', '<hl>'])
train_dataset = nlp.load_dataset(data_args.dataset_path, name=data_args.qg_format, split=nlp.Split.TRAIN)
valid_dataset = nlp.load_dataset(data_args.dataset_path, name=data_args.qg_format, split=nlp.Split.VALIDATION)
processor = DataProcessor(
tokenizer,
model_type=data_args.model_type,
max_source_length=data_args.max_source_length,
max_target_length=data_args.max_target_length
)
train_dataset = train_dataset.filter(TASK_TO_FILTER_FN[data_args.task])
if data_args.task == 'multi' and data_args.valid_for_qg_only:
logger.info("processing valid data only for qg task")
valid_dataset = valid_dataset.filter(filter_qg)
else:
valid_dataset = valid_dataset.filter(TASK_TO_FILTER_FN[data_args.task])
train_dataset = processor.process(train_dataset)
valid_dataset = processor.process(valid_dataset)
columns = ["source_ids", "target_ids", "attention_mask"]
train_dataset.set_format(type='torch', columns=columns)
valid_dataset.set_format(type='torch', columns=columns)
if data_args.train_file_name is None:
train_file_name = f"train_data_{data_args.task}_{data_args.qg_format}_{data_args.model_type}.pt"
train_path = os.path.join("data", train_file_name)
valid_file_name = f"valid_data_{data_args.task}_{data_args.qg_format}_{data_args.model_type}.pt"
valid_path = os.path.join("data", valid_file_name)
else:
train_path = os.path.join("data", data_args.train_file_name)
valid_path = os.path.join("data", data_args.valid_file_name)
torch.save(train_dataset, train_path)
logger.info(f"saved train dataset at {train_path}")
torch.save(valid_dataset, valid_path)
logger.info(f"saved validation dataset at {valid_path}")
tokenizer_path = f"{data_args.model_type}_qg_tokenizer"
if not os.path.exists(tokenizer_path):
os.mkdir(tokenizer_path)
tokenizer.save_pretrained(tokenizer_path)
logger.info(f"saved tokenizer at {tokenizer_path}")
if __name__ == "__main__":
main()