SocialAISchool / campain_launcher.py
grg's picture
Cleaned old git history
be5548b
raw
history blame
22.9 kB
import sys
import time
from pathlib import Path
from datetime import date
import subprocess
import shutil
import os
import stat
import getpass
def get_sec(time_str):
"""Get seconds from time."""
h, m, s = time_str.split(':')
return int(h) * 3600 + int(m) * 60 + int(s)
def write_script(script_fullname, exp_name, PYTHON_INTERP, n_cpu_cores, slurm_conf_name, run_args, script_frames,
is_continue=False, dependecy_jobid=None):
print('creating slurm script with: --model {} {} --frames {} {}'.format(exp_name, run_args, script_frames, "--continue-train auto" if is_continue else ""))
logfile_name = "{}{}_jid_%A".format(exp_name, "_cont_"+dependecy_jobid if is_continue else "")
with open(script_fullname, 'w') as f:
f.write('#!/bin/sh\n')
if is_continue:
f.write('#SBATCH --dependency=afterok:{}\n'.format(dependecy_jobid))
f.write('#SBATCH --kill-on-invalid-dep=yes\n')
f.write('#SBATCH --ntasks=1\n')
f.write('#SBATCH --cpus-per-task={}\n'.format((n_cpu_cores * n_seeds_per_one_launch)//2)) # cpus asked = num_cores // 2
if "jz" in slurm_conf_name:
f.write('#SBATCH --hint=nomultithread\n')
f.write(slurm_confs[slurm_conf_name])
f.write('#SBATCH --open-mode=append\n') # append logs in logs files instead of truncating
f.write('#SBATCH -o campain_logs/jobouts/{}.sh.out\n'
'#SBATCH -e campain_logs/jobouts/{}.sh.err\n'.format(logfile_name, logfile_name))
f.write("export EXP_INTERP='{}' ;\n".format(PYTHON_INTERP))
f.write('# Launch !\n')
f.write(
'cpu_list=$(taskset -pc $$ | sed -E "s/(.*): (.*)/\\2/g" | tr "," "\\n" | sed -E "s/^[0-9]*$/&-&/g" | sed -E "s/-/ /g" | xargs -l seq | tr "\\n" " ")\n')
f.write('echo "cpu list: $cpu_list"\n')
f.write('COUNT=${1:-0}\n')
f.write('i=0\n')
f.write('cpus=""\n')
f.write('for cpu in $cpu_list; do\n')
f.write('cpus="$cpus$cpu"\n')
f.write('i=$(($i+1))\n')
f.write('if [ "$i" = "{}" ]; then\n'.format(n_cpu_cores))
if "2gpus" in slurm_conf_name:
f.write(
"{}".format('CUDA_VISIBLE_DEVICES=$(( $COUNT % 2 )); ') +
'taskset -c $cpus $EXP_INTERP -m scripts.train --model {}/$COUNT --seed $COUNT'.format(exp_name) +
run_args + " --frames {}".format(script_frames) + "{}".format(" --continue-train auto" if is_continue else "") + ' &\n')
elif "4gpus" in slurm_conf_name:
f.write(
"{}".format('CUDA_VISIBLE_DEVICES=$(( $COUNT % 4 )); ') +
'taskset -c $cpus $EXP_INTERP -m scripts.train --model {}/$COUNT --seed $COUNT'.format(exp_name) +
run_args + " --frames {}".format(script_frames) + "{}".format(" --continue-train auto" if is_continue else "") + ' &\n')
else:
f.write(
# "{}".format('CUDA_VISIBLE_DEVICES=$(( $COUNT % 2 )); ' if "2gpus" in slurm_conf_name else "") +
'taskset -c $cpus $EXP_INTERP -m scripts.train --model {}/$COUNT --seed $COUNT'.format(exp_name) +
run_args + " --frames {}".format(script_frames) + "{}".format(" --continue-train auto" if is_continue else "") + ' &\n')
f.write('echo "Using cpus $cpus for seed $COUNT"\n')
f.write('COUNT=$(( $COUNT + 1 ))\n')
f.write('cpus=""\n')
f.write('i=0\n')
f.write('else\n')
f.write('cpus="$cpus,"\n')
f.write('fi\n')
f.write('done\n')
f.write('wait\n')
f.close()
st = os.stat(script_fullname)
os.chmod(script_fullname, st.st_mode | stat.S_IEXEC)
def write_script_one_seed(script_fullname, exp_name, PYTHON_INTERP, n_cpu_cores, slurm_conf_name, run_args, script_frames,
is_continue=False, dependecy_jobid=None):
n_cpus = n_cpu_cores//2
assert n_seeds_per_one_launch == 1, "Use write_script_old"
print('creating slurm script with: --model {} {} --frames {} {}'.format(exp_name, run_args, script_frames, "--continue-train auto" if is_continue else ""))
logfile_name = "{}{}_jid_%A".format(exp_name, "_cont_"+dependecy_jobid if is_continue else "")
with open(script_fullname, 'w') as f:
f.write('#!/bin/sh\n')
if is_continue:
f.write('#SBATCH --dependency=afterok:{}\n'.format(dependecy_jobid))
f.write('#SBATCH --kill-on-invalid-dep=yes\n')
f.write('#SBATCH --ntasks=1\n')
f.write('#SBATCH --cpus-per-task={}\n'.format((n_cpus)))
if "jz" in slurm_conf_name:
f.write('#SBATCH --hint=nomultithread\n')
f.write(slurm_confs[slurm_conf_name])
f.write('#SBATCH --open-mode=append\n') # append logs in logs files instead of truncating
f.write('#SBATCH -o campain_logs/jobouts/{}.sh.out\n'
'#SBATCH -e campain_logs/jobouts/{}.sh.err\n'.format(logfile_name, logfile_name))
f.write("export EXP_INTERP='{}' ;\n".format(PYTHON_INTERP))
f.write('SEED=${1:-0}\n')
f.write('# Launch !\n')
f.write(
'$EXP_INTERP -m scripts.train --model {}/$SEED --seed $SEED'.format(exp_name) +
run_args + " --frames {}".format(script_frames) + "{}".format(" --continue-train auto" if is_continue else ""))
f.close()
st = os.stat(script_fullname)
os.chmod(script_fullname, st.st_mode | stat.S_IEXEC)
def process_arg_string(expe_args): # function to extract flagged (with a *) arguments as details for experience name
details_string = ''
processed_arg_string = expe_args.replace('*', '') # keep a version of args cleaned from exp name related flags
# args = [arg_chunk.split(' -') for arg_chunk in expe_args.split(' --')]
arg_chunks = [arg_chunk for arg_chunk in expe_args.split(' --')]
args_list = []
for arg in arg_chunks:
if ' -' in arg and arg.split(' -')[1].isalpha():
args_list.extend(arg.split(' -'))
else:
args_list.append(arg)
# args_list = [item for sublist in args for item in sublist] # flatten
for arg in args_list:
if arg == '':
continue
if arg[0] == '*':
if arg[-1] == ' ':
arg = arg[:-1]
details_string += '_' + arg[1:].replace(' ', '_').replace('/', '-')
return details_string, processed_arg_string
slurm_confs = {'curta_extra_long': "#SBATCH -p inria\n"
"#SBATCH -t 119:00:00\n",
'curta_long': "#SBATCH -p inria\n"
"#SBATCH -t 72:00:00\n",
'curta_medium': "#SBATCH -p inria\n"
"#SBATCH -t 48:00:00\n",
'curta_short': "#SBATCH -p inria\n"
"#SBATCH -t 24:00:00\n",
'jz_super_short_gpu':
'#SBATCH -A imi@v100\n'
'#SBATCH --gres=gpu:1\n'
"#SBATCH -t 3:59:00\n"
"#SBATCH --qos=qos_gpu-t3\n",
'jz_short_gpu': '#SBATCH -A imi@v100\n'
'#SBATCH --gres=gpu:1\n'
"#SBATCH -t 19:59:00\n"
"#SBATCH --qos=qos_gpu-t3\n",
'jz_super_short_gpu_chained':
'#SBATCH -A imi@v100\n'
'#SBATCH --gres=gpu:1\n'
"#SBATCH -t 3:59:00\n"
"#SBATCH -C v100\n"
"#SBATCH --qos=qos_gpu-t3\n",
'jz_short_gpu_chained': '#SBATCH -A imi@v100\n'
'#SBATCH --gres=gpu:1\n'
"#SBATCH -t 19:59:00\n"
"#SBATCH -C v100\n"
"#SBATCH --qos=qos_gpu-t3\n",
'jz_short_gpu_chained_a100_4h': '#SBATCH -A imi@a100\n'
'#SBATCH --gres=gpu:1\n'
"#SBATCH -t 3:59:00\n"
"#SBATCH -C a100\n"
"#SBATCH --qos=qos_gpu-t3\n",
'jz_short_gpu_chained_a100': '#SBATCH -A imi@a100\n'
'#SBATCH --gres=gpu:1\n'
"#SBATCH -t 19:59:00\n"
"#SBATCH -C a100\n"
"#SBATCH --qos=qos_gpu-t3\n",
'jz_short_2gpus_chained': '#SBATCH -A imi@v100\n'
'#SBATCH --gres=gpu:2\n'
"#SBATCH -t 19:59:00\n"
"#SBATCH -C v100\n"
"#SBATCH --qos=qos_gpu-t3\n",
'jz_short_4gpus_chained': '#SBATCH -A imi@v100\n'
'#SBATCH --gres=gpu:4\n'
"#SBATCH -t 19:59:00\n"
"#SBATCH -C v100\n"
"#SBATCH --qos=qos_gpu-t3\n",
'jz_medium_gpu': '#SBATCH -A imi@v100\n'
'#SBATCH --gres=gpu:1\n'
"#SBATCH -t 48:00:00\n"
"#SBATCH --qos=qos_gpu-t4\n",
'jz_super_short_2gpus': '#SBATCH -A imi@v100\n'
'#SBATCH --gres=gpu:2\n'
"#SBATCH -t 14:59:00\n"
"#SBATCH --qos=qos_gpu-t3\n",
'jz_short_2gpus': '#SBATCH -A imi@v100\n'
'#SBATCH --gres=gpu:2\n'
"#SBATCH -t 19:59:00\n"
"#SBATCH --qos=qos_gpu-t3\n",
'jz_short_2gpus_32g': '#SBATCH -A imi@v100\n'
'#SBATCH -C v100-32g\n'
'#SBATCH --gres=gpu:2\n'
"#SBATCH -t 19:59:00\n"
"#SBATCH --qos=qos_gpu-t3\n",
'jz_medium_2gpus': '#SBATCH -A imi@v100\n'
'#SBATCH --gres=gpu:2\n'
"#SBATCH -t 48:00:00\n"
"#SBATCH --qos=qos_gpu-t4\n",
'jz_medium_2gpus_32g': '#SBATCH -A imi@v100\n'
'#SBATCH -C v100-32g\n'
'#SBATCH --gres=gpu:2\n'
"#SBATCH -t 48:00:00\n"
"#SBATCH --qos=qos_gpu-t4\n",
'jz_long_gpu': '#SBATCH -A imi@v100\n'
'#SBATCH --gres=gpu:1\n'
"#SBATCH -t 72:00:00\n"
"#SBATCH --qos=qos_gpu-t4\n",
'jz_long_2gpus': '#SBATCH -A imi@v100\n'
'#SBATCH --gres=gpu:2\n'
'#SBATCH -t 72:00:00\n'
'#SBATCH --qos=qos_gpu-t4\n',
'jz_long_2gpus_32g': '#SBATCH -A imi@v100\n'
'#SBATCH -C v100-32g\n'
'#SBATCH --gres=gpu:2\n'
"#SBATCH -t 72:00:00\n"
"#SBATCH --qos=qos_gpu-t4\n",
'jz_super_long_2gpus_32g': '#SBATCH -A imi@v100\n'
'#SBATCH -C v100-32g\n'
'#SBATCH --gres=gpu:2\n'
"#SBATCH -t 99:00:00\n"
"#SBATCH --qos=qos_gpu-t4\n",
'jz_short_cpu_chained': '#SBATCH -A imi@cpu\n'
"#SBATCH -t 19:59:00\n"
"#SBATCH --qos=qos_cpu-t3\n",
'jz_short_cpu': '#SBATCH -A imi@cpu\n'
"#SBATCH -t 19:59:00\n"
"#SBATCH --qos=qos_cpu-t3\n",
'jz_medium_cpu': '#SBATCH -A imi@cpu\n'
"#SBATCH -t 48:00:00\n"
"#SBATCH --qos=qos_cpu-t4\n",
'jz_long_cpu': '#SBATCH -A imi@cpu\n'
"#SBATCH -t 72:00:00\n"
"#SBATCH --qos=qos_cpu-t4\n",
'plafrim_cpu_medium': "#SBATCH -t 48:00:00\n",
'plafrim_cpu_long': "#SBATCH -t 72:00:00\n",
'plafrim_gpu_medium': '#SBATCH -p long_sirocco\n'
"#SBATCH -t 48:00:00\n"
'#SBATCH --gres=gpu:1\n'
}
cur_path = str(Path.cwd())
date = date.today().strftime("%d-%m")
# create campain log dir if not already done
Path(cur_path + "/campain_logs/jobouts/").mkdir(parents=True, exist_ok=True)
Path(cur_path + "/campain_logs/scripts/").mkdir(parents=True, exist_ok=True)
# Load txt file containing experiments to run (give it as argument to this script)
filename = 'to_run.txt'
if len(sys.argv) >= 2:
filename = sys.argv[1]
launch = True
# Save a copy of txt file
shutil.copyfile(cur_path + "/" + filename, cur_path + '/campain_logs/scripts/' + date + '_' + filename)
# how many seeds does one launch launch
# one_launch_per_n_seeds = 8
global_seed_offset = 0
incremental = False
if len(sys.argv) >= 3:
if sys.argv[2] == 'nolaunch':
launch = False
if sys.argv[2] == 'seed_offset':
global_seed_offset = int(sys.argv[3])
if sys.argv[2] == 'incremental_seed_offset':
global_seed_offset = int(sys.argv[3])
incremental = True
if launch:
print('Creating and Launching slurm scripts given arguments from {}'.format(filename))
# time.sleep(1.0)
expe_list = []
with open(filename, 'r') as f:
expe_list = [line.rstrip() for line in f]
exp_names = set()
for expe_args in expe_list:
seed_offset_to_use = global_seed_offset
if len(expe_args) == 0:
# empty line
continue
if expe_args[0] == '#':
# comment line
continue
arguments = ['slurm_conf', 'nb_seeds', 'cpu_cores_per_seed', 'gpus_per_seed', 'seeds_per_launch', 'frames', 'model']
exp_config = expe_args.split('--')[1:len(arguments)+1]
given_args = [arg.split(' ')[0] for arg in exp_config]
if not given_args == arguments:
raise ValueError("Arguments must be in the following order {}, and are {}".format(arguments, given_args))
slurm_conf_name, nb_seeds, n_cpu_cores_per_seed, n_gpus_per_seed, n_seeds_per_one_launch, frames, exp_name = [arg.split(' ')[1] for arg in exp_config]
n_seeds_per_one_launch = int(n_seeds_per_one_launch)
n_cpu_cores_per_seed = int(n_cpu_cores_per_seed)
user = getpass.getuser()
if 'curta' in slurm_conf_name:
gpu = ''
PYTHON_INTERP = "$HOME/anaconda3/envs/act_and_speak/bin/python"
n_cpu_cores_per_seed = 1
elif 'plafrim' in slurm_conf_name:
gpu = ''
PYTHON_INTERP = '/home/{}/USER/conda/envs/act_and_speak/bin/python'.format(user)
n_cpu_cores_per_seed = 1
elif 'jz' in slurm_conf_name:
if user == "utu57ed" or user == 'flowers':
PYTHON_INTERP='/gpfsscratch/rech/imi/{}/miniconda3/envs/social_ai/bin/python'.format(user)
elif user == "uxo14qj":
PYTHON_INTERP='/gpfswork/rech/imi/{}/miniconda3/envs/act_and_speak/bin/python'.format(user)
else:
if user != "flowers":
raise ValueError("Who are you? User {} unknown.".format(user))
gpu = '' # '--gpu_id 0'
# n_cpus = 2
# n_seeds_per_one_launch = 4
# n_cpu_cores = 16 # n cpu cores for one seed
# assert n_cpu_cores * n_seeds_per_one_launch == 64
# n_seeds_per_one_launch = 2
# n_cpu_cores = 16 # n cpu cores for one seed
# assert n_cpu_cores * n_seeds_per_one_launch == 32
# n_seeds_per_one_launch = 2
# n_cpu_cores = 32 # n cpu cores for one seed
# assert n_cpu_cores * n_seeds_per_one_launch == 64
# n_seeds_per_one_launch = 1
# n_cpu_cores = 16 # n cpu cores for one seed
# assert n_cpu_cores * n_seeds_per_one_launch == 16
#
# n_seeds_per_one_launch = 1
# n_cpu_cores = 32 # n cpu cores for one seed
# assert n_cpu_cores * n_seeds_per_one_launch == 32
#
# assert n_seeds_per_one_launch == 1
# assert n_cpu_cores_per_seed == 64 # n cpu cores for one seed
# assert n_cpu_cores_per_seed * n_seeds_per_one_launch == 64
# n_cpus = 64 # n cpu cores for one seed
# assert n_cpus*one_launch_per_n_seeds == 256 # cpus_per_task is 8 will result in 16 cpu cores
if "2gpus" in slurm_conf_name:
job_gpus = 2
elif "4gpus" in slurm_conf_name:
job_gpus = 4
elif "gpu" in slurm_conf_name:
job_gpus = 1
else:
print("No gpus used")
job_gpus = 1
assert float(n_gpus_per_seed) == float(job_gpus / n_seeds_per_one_launch)
print(f"\nJob configuration (1 launch):")
print(f"\tSeeds: {n_seeds_per_one_launch}")
print(f"\tGPUs: {job_gpus}")
print(f"\n1 seed configuration:")
print(f"\tCPU cores {n_cpu_cores_per_seed}")
print(f"\tGPUs {job_gpus / n_seeds_per_one_launch}")
time.sleep(0.5)
else:
raise Exception("Unrecognized conf name: {} ".format(slurm_conf_name))
# assert ((int(nb_seeds) % 8) == 0), 'number of seeds should be divisible by 8'
assert ((int(nb_seeds) % 4) == 0) or (int(nb_seeds) == 1), f'number of seeds should be divisible by 4 or 1 and is {nb_seeds}'
run_args = expe_args.split(exp_name, 1)[
1] # WARNING: assumes that exp_name comes after slurm_conf and nb_seeds and frames in txt
# prepare experiment name formatting (use --* or -* instead of -- or - to use argument in experiment name
# print(expe_args.split(exp_name))
exp_details, run_args = process_arg_string(run_args)
exp_name = date + '_' + exp_name + exp_details
# no two trains are to be put in the same dir
assert exp_names not in exp_names
exp_names.add(exp_name)
slurm_script_fullname = cur_path + "/campain_logs/scripts/{}".format(exp_name) + ".sh"
# create corresponding slurm script
# calculate how many chained jobs we need
chained_training = "chained" in slurm_conf_name
frames = int(frames)
print(chained_training)
if chained_training:
# assume 10M frames per 20h (fps 140 - very conservative)
timelimit = slurm_confs[slurm_conf_name].split("-t ")[-1].split("\n")[0]
if timelimit == '19:59:00':
one_script_frames = 10000000
elif timelimit == "3:59:00":
one_script_frames = 2500000
else:
raise ValueError(f"Bad timelimit {timelimit}.")
print(f"One script frames: {one_script_frames}")
num_chained_jobs = frames // one_script_frames + bool(frames % one_script_frames)
# # assume conservative fps - 300 (for one seed per gpu)
# fps = 300
# timelimit = slurm_confs[slurm_conf_name].split("-t ")[-1].split("\n")[0]
# assert timelimit == '3:59:00'
# timelimit_secs = get_sec(timelimit)
#
# one_script_frames = fps*timelimit_secs
#
# num_chained_jobs = frames // one_script_frames + bool(frames % one_script_frames)
#
# print(f"One script frames: {one_script_frames} -> num chained jobs {num_chained_jobs}")
else:
one_script_frames = frames
num_chained_jobs = 1 # no chaining
assert "--frames " not in run_args
current_script_frames = min(one_script_frames, frames)
if n_seeds_per_one_launch == 1:
write_script_one_seed(slurm_script_fullname, exp_name, PYTHON_INTERP, n_cpu_cores_per_seed,
slurm_conf_name, run_args, current_script_frames, is_continue=False,
dependecy_jobid=None)
else:
write_script(slurm_script_fullname, exp_name, PYTHON_INTERP, n_cpu_cores_per_seed, slurm_conf_name,
run_args, current_script_frames, is_continue=False, dependecy_jobid=None)
# launch scripts
if launch:
for i in range(int(nb_seeds) // n_seeds_per_one_launch):
print('starting from seed {}'.format((i * n_seeds_per_one_launch) + global_seed_offset))
# run start job
sbatch_pipe = subprocess.Popen(
['sbatch', 'campain_logs/scripts/{}.sh'.format(exp_name), str((i * n_seeds_per_one_launch) + seed_offset_to_use)], # 0 4 8 12
stdout=subprocess.PIPE
)
job_id = subprocess.check_output(('cut', '-d', ' ', '-f', '4'), stdin=sbatch_pipe.stdout).decode("utf_8").rstrip()
sbatch_pipe.wait()
# out = subprocess.run(
# ['sbatch', 'campain_logs/scripts/{}.sh'.format(exp_name), str((i * one_launch_per_n_seeds) + seed_offset_to_use)], # 0 4 8 12
# capture_output=True
# ).stdout.decode("utf-8")
# continue jobs
for cont_job_i in range(num_chained_jobs-1):
# write continue script
cont_script_name = "{}_continue_{}.sh".format(exp_name, job_id)
continue_slurm_script_fullname = cur_path + "/campain_logs/scripts/"+cont_script_name
current_script_frames = min(one_script_frames*(2+cont_job_i), frames)
if n_seeds_per_one_launch == 1:
write_script_one_seed(continue_slurm_script_fullname, exp_name, PYTHON_INTERP, n_cpu_cores_per_seed,
slurm_conf_name, run_args, current_script_frames,
is_continue=True, dependecy_jobid=job_id)
else:
write_script(continue_slurm_script_fullname, exp_name, PYTHON_INTERP, n_cpu_cores_per_seed, slurm_conf_name, run_args, current_script_frames,
is_continue=True, dependecy_jobid=job_id)
# run continue job
sbatch_pipe = subprocess.Popen(
['sbatch', 'campain_logs/scripts/{}'.format(cont_script_name), str((i * n_seeds_per_one_launch) + seed_offset_to_use)], # 0 4 8 12
stdout=subprocess.PIPE
)
job_id = subprocess.check_output(('cut', '-d', ' ', '-f', '4'), stdin=sbatch_pipe.stdout).decode("utf_8").rstrip()
sbatch_pipe.wait()
if incremental:
global_seed_offset += int(nb_seeds)