Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -15,9 +15,6 @@ from utils import load_t5, load_clap
|
|
15 |
from train import RF
|
16 |
from constants import build_model
|
17 |
|
18 |
-
# Disable flash attention if not available
|
19 |
-
torch.backends.cuda.enable_flash_sdp(False)
|
20 |
-
|
21 |
# Global variables to store loaded models and resources
|
22 |
global_model = None
|
23 |
global_t5 = None
|
@@ -31,8 +28,39 @@ MODELS_DIR = "/content/models"
|
|
31 |
GENERATIONS_DIR = "/content/generations"
|
32 |
|
33 |
def prepare(t5, clip, img, prompt):
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def unload_current_model():
|
38 |
global global_model
|
@@ -87,12 +115,92 @@ def load_resources():
|
|
87 |
print("Base resources loaded successfully!")
|
88 |
|
89 |
def generate_music(prompt, seed, cfg_scale, steps, duration, progress=gr.Progress()):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Load base resources at startup
|
98 |
load_resources()
|
|
|
15 |
from train import RF
|
16 |
from constants import build_model
|
17 |
|
|
|
|
|
|
|
18 |
# Global variables to store loaded models and resources
|
19 |
global_model = None
|
20 |
global_t5 = None
|
|
|
28 |
GENERATIONS_DIR = "/content/generations"
|
29 |
|
30 |
def prepare(t5, clip, img, prompt):
|
31 |
+
bs, c, h, w = img.shape
|
32 |
+
if bs == 1 and not isinstance(prompt, str):
|
33 |
+
bs = len(prompt)
|
34 |
+
|
35 |
+
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
36 |
+
if img.shape[0] == 1 and bs > 1:
|
37 |
+
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
38 |
+
|
39 |
+
img_ids = torch.zeros(h // 2, w // 2, 3)
|
40 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
41 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
42 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
43 |
+
|
44 |
+
if isinstance(prompt, str):
|
45 |
+
prompt = [prompt]
|
46 |
+
|
47 |
+
# Generate text embeddings
|
48 |
+
txt = t5(prompt)
|
49 |
+
|
50 |
+
if txt.shape[0] == 1 and bs > 1:
|
51 |
+
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
52 |
+
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
53 |
+
|
54 |
+
vec = clip(prompt)
|
55 |
+
if vec.shape[0] == 1 and bs > 1:
|
56 |
+
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
57 |
+
|
58 |
+
return img, {
|
59 |
+
"img_ids": img_ids.to(img.device),
|
60 |
+
"txt": txt.to(img.device),
|
61 |
+
"txt_ids": txt_ids.to(img.device),
|
62 |
+
"y": vec.to(img.device),
|
63 |
+
}
|
64 |
|
65 |
def unload_current_model():
|
66 |
global global_model
|
|
|
115 |
print("Base resources loaded successfully!")
|
116 |
|
117 |
def generate_music(prompt, seed, cfg_scale, steps, duration, progress=gr.Progress()):
|
118 |
+
global global_model, global_t5, global_clap, global_vae, global_vocoder, global_diffusion
|
119 |
+
|
120 |
+
if global_model is None:
|
121 |
+
return "Please select a model first.", None
|
122 |
+
|
123 |
+
if seed == 0:
|
124 |
+
seed = random.randint(1, 1000000)
|
125 |
+
print(f"Using seed: {seed}")
|
126 |
+
|
127 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
128 |
+
torch.manual_seed(seed)
|
129 |
+
torch.set_grad_enabled(False)
|
130 |
+
|
131 |
+
# Calculate the number of segments needed for the desired duration
|
132 |
+
segment_duration = 10 # Each segment is 10 seconds
|
133 |
+
num_segments = int(np.ceil(duration / segment_duration))
|
134 |
+
|
135 |
+
all_waveforms = []
|
136 |
+
|
137 |
+
for i in range(num_segments):
|
138 |
+
progress(i / num_segments, desc=f"Generating segment {i+1}/{num_segments}")
|
139 |
+
|
140 |
+
# Use the same seed for all segments
|
141 |
+
torch.manual_seed(seed + i) # Add i to slightly vary each segment while maintaining consistency
|
142 |
+
|
143 |
+
latent_size = (256, 16)
|
144 |
+
conds_txt = [prompt]
|
145 |
+
unconds_txt = ["low quality, gentle"]
|
146 |
+
L = len(conds_txt)
|
147 |
+
|
148 |
+
init_noise = torch.randn(L, 8, latent_size[0], latent_size[1]).to(device)
|
149 |
+
|
150 |
+
img, conds = prepare(global_t5, global_clap, init_noise, conds_txt)
|
151 |
+
_, unconds = prepare(global_t5, global_clap, init_noise, unconds_txt)
|
152 |
+
|
153 |
+
with torch.autocast(device_type='cuda'):
|
154 |
+
images = global_diffusion.sample_with_xps(global_model, img, conds=conds, null_cond=unconds, sample_steps=steps, cfg=cfg_scale)
|
155 |
+
|
156 |
+
images = rearrange(
|
157 |
+
images[-1],
|
158 |
+
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
159 |
+
h=128,
|
160 |
+
w=8,
|
161 |
+
ph=2,
|
162 |
+
pw=2,)
|
163 |
+
|
164 |
+
latents = 1 / global_vae.config.scaling_factor * images
|
165 |
+
mel_spectrogram = global_vae.decode(latents).sample
|
166 |
+
|
167 |
+
x_i = mel_spectrogram[0]
|
168 |
+
if x_i.dim() == 4:
|
169 |
+
x_i = x_i.squeeze(1)
|
170 |
+
waveform = global_vocoder(x_i)
|
171 |
+
waveform = waveform[0].cpu().float().detach().numpy()
|
172 |
+
|
173 |
+
all_waveforms.append(waveform)
|
174 |
+
|
175 |
+
# Concatenate all waveforms
|
176 |
+
final_waveform = np.concatenate(all_waveforms)
|
177 |
+
|
178 |
+
# Trim to exact duration
|
179 |
+
sample_rate = 16000
|
180 |
+
final_waveform = final_waveform[:int(duration * sample_rate)]
|
181 |
+
|
182 |
+
progress(0.9, desc="Saving audio file")
|
183 |
+
|
184 |
+
# Create 'generations' folder
|
185 |
+
os.makedirs(GENERATIONS_DIR, exist_ok=True)
|
186 |
+
|
187 |
+
# Generate filename
|
188 |
+
prompt_part = re.sub(r'[^\w\s-]', '', prompt)[:10].strip().replace(' ', '_')
|
189 |
+
model_name = os.path.splitext(os.path.basename(global_model.model_path))[0]
|
190 |
+
model_suffix = '_mf_b' if model_name == 'musicflow_b' else f'_{model_name}'
|
191 |
+
base_filename = f"{prompt_part}_{seed}{model_suffix}"
|
192 |
+
output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}.wav")
|
193 |
+
|
194 |
+
# Check if file exists and add numerical suffix if needed
|
195 |
+
counter = 1
|
196 |
+
while os.path.exists(output_path):
|
197 |
+
output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}_{counter}.wav")
|
198 |
+
counter += 1
|
199 |
+
|
200 |
+
wavfile.write(output_path, sample_rate, final_waveform)
|
201 |
+
|
202 |
+
progress(1.0, desc="Audio generation complete")
|
203 |
+
return f"Generated with seed: {seed}", output_path
|
204 |
|
205 |
# Load base resources at startup
|
206 |
load_resources()
|