Spaces:
Running
Running
from torch import Tensor, nn | |
from transformers import (CLIPTextModel, CLIPTokenizer, T5EncoderModel, | |
T5Tokenizer, AutoTokenizer, ClapTextModel) | |
class HFEmbedder(nn.Module): | |
def __init__(self, version: str, max_length: int, **hf_kwargs): | |
super().__init__() | |
self.is_t5 = version.startswith("google") | |
self.max_length = max_length | |
self.output_key = "last_hidden_state" if self.is_t5 else "pooler_output" | |
if version.startswith("openai"): | |
local_path = 'ckpt/stable-diffusion-3-medium-diffusers' | |
local_path_tokenizer = 'ckpt/stable-diffusion-3-medium-diffusers' | |
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(local_path_tokenizer, subfolder="tokenizer", max_length=max_length) | |
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(local_path, subfolder="text_encoder", **hf_kwargs).half() | |
elif version.startswith("laion"): | |
local_path = "laion/clap-htsat-fused" | |
self.tokenizer = AutoTokenizer.from_pretrained(local_path, max_length=max_length) | |
self.hf_module: ClapTextModel = ClapTextModel.from_pretrained(local_path, **hf_kwargs).half() | |
else: | |
local_path = 'ckpt/stable-diffusion-3-medium-diffusers' | |
local_path_tokenizer = 'ckpt/stable-diffusion-3-medium-diffusers' | |
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(local_path_tokenizer, subfolder="tokenizer_3", max_length=max_length) | |
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(local_path, subfolder="text_encoder_3", **hf_kwargs).half() | |
self.hf_module = self.hf_module.eval().requires_grad_(False) | |
def forward(self, text: list[str]) -> Tensor: | |
batch_encoding = self.tokenizer( | |
text, | |
truncation=True, | |
max_length=self.max_length, | |
return_length=False, | |
return_overflowing_tokens=False, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
outputs = self.hf_module( | |
input_ids=batch_encoding["input_ids"].to(self.hf_module.device), | |
attention_mask=None, | |
output_hidden_states=False, | |
) | |
return outputs[self.output_key] | |