flosstradamus's picture
Upload 194 files
afe1a07 verified
raw
history blame
13.2 kB
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm
LRELU_SLOPE = 0.1
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
class ResBlock1(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.h = h
self.convs1 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
]
)
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.h = h
self.convs = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
]
)
self.convs.apply(init_weights)
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class Generator(torch.nn.Module):
def __init__(self, h):
super(Generator, self).__init__()
self.h = h
self.num_kernels = len(h.resblock_kernel_sizes)
self.num_upsamples = len(h.upsample_rates)
self.conv_pre = weight_norm(
Conv1d(256, h.upsample_initial_channel, 7, 1, padding=3)
)
resblock = ResBlock1 if h.resblock == "1" else ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
self.ups.append(
weight_norm(
ConvTranspose1d(
h.upsample_initial_channel // (2**i),
h.upsample_initial_channel // (2 ** (i + 1)),
u * 2,
u,
padding=u // 2 + u % 2,
output_padding=u % 2,
)
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = h.upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
):
self.resblocks.append(resblock(h, ch, k, d))
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
def forward(self, x):
# import ipdb; ipdb.set_trace()
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
# print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
##################################################################################################
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
# from torch.nn import Conv1d, ConvTranspose1d
# from torch.nn.utils import weight_norm, remove_weight_norm
# LRELU_SLOPE = 0.1
# def init_weights(m, mean=0.0, std=0.01):
# classname = m.__class__.__name__
# if classname.find("Conv") != -1:
# m.weight.data.normal_(mean, std)
# def get_padding(kernel_size, dilation=1):
# return int((kernel_size * dilation - dilation) / 2)
# class ResBlock(torch.nn.Module):
# def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
# super(ResBlock, self).__init__()
# self.h = h
# self.convs1 = nn.ModuleList(
# [
# weight_norm(
# Conv1d(
# channels,
# channels,
# kernel_size,
# 1,
# dilation=dilation[0],
# padding=get_padding(kernel_size, dilation[0]),
# )
# ),
# weight_norm(
# Conv1d(
# channels,
# channels,
# kernel_size,
# 1,
# dilation=dilation[1],
# padding=get_padding(kernel_size, dilation[1]),
# )
# ),
# weight_norm(
# Conv1d(
# channels,
# channels,
# kernel_size,
# 1,
# dilation=dilation[2],
# padding=get_padding(kernel_size, dilation[2]),
# )
# ),
# ]
# )
# self.convs1.apply(init_weights)
# self.convs2 = nn.ModuleList(
# [
# weight_norm(
# Conv1d(
# channels,
# channels,
# kernel_size,
# 1,
# dilation=1,
# padding=get_padding(kernel_size, 1),
# )
# ),
# weight_norm(
# Conv1d(
# channels,
# channels,
# kernel_size,
# 1,
# dilation=1,
# padding=get_padding(kernel_size, 1),
# )
# ),
# weight_norm(
# Conv1d(
# channels,
# channels,
# kernel_size,
# 1,
# dilation=1,
# padding=get_padding(kernel_size, 1),
# )
# ),
# ]
# )
# self.convs2.apply(init_weights)
# def forward(self, x):
# for c1, c2 in zip(self.convs1, self.convs2):
# xt = F.leaky_relu(x, LRELU_SLOPE)
# xt = c1(xt)
# xt = F.leaky_relu(xt, LRELU_SLOPE)
# xt = c2(xt)
# x = xt + x
# return x
# def remove_weight_norm(self):
# for l in self.convs1:
# remove_weight_norm(l)
# for l in self.convs2:
# remove_weight_norm(l)
# class Generator(torch.nn.Module):
# def __init__(self, h):
# super(Generator, self).__init__()
# self.h = h
# self.num_kernels = len(h.resblock_kernel_sizes)
# self.num_upsamples = len(h.upsample_rates)
# self.conv_pre = weight_norm(
# Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
# )
# resblock = ResBlock
# self.ups = nn.ModuleList()
# for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
# self.ups.append(
# weight_norm(
# ConvTranspose1d(
# h.upsample_initial_channel // (2**i),
# h.upsample_initial_channel // (2 ** (i + 1)),
# k,
# u,
# padding=(k - u) // 2,
# )
# )
# )
# self.resblocks = nn.ModuleList()
# for i in range(len(self.ups)):
# ch = h.upsample_initial_channel // (2 ** (i + 1))
# for j, (k, d) in enumerate(
# zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
# ):
# self.resblocks.append(resblock(h, ch, k, d))
# self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
# self.ups.apply(init_weights)
# self.conv_post.apply(init_weights)
# def forward(self, x):
# x = self.conv_pre(x)
# for i in range(self.num_upsamples):
# x = F.leaky_relu(x, LRELU_SLOPE)
# x = self.ups[i](x)
# xs = None
# for j in range(self.num_kernels):
# if xs is None:
# xs = self.resblocks[i * self.num_kernels + j](x)
# else:
# xs += self.resblocks[i * self.num_kernels + j](x)
# x = xs / self.num_kernels
# x = F.leaky_relu(x)
# x = self.conv_post(x)
# x = torch.tanh(x)
# return x
# def remove_weight_norm(self):
# print("Removing weight norm...")
# for l in self.ups:
# remove_weight_norm(l)
# for l in self.resblocks:
# l.remove_weight_norm()
# remove_weight_norm(self.conv_pre)
# remove_weight_norm(self.conv_post)