Spaces:
Running
Running
from multiprocessing.sharedctypes import Value | |
import os | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from einops import rearrange, repeat | |
from contextlib import contextmanager | |
from functools import partial | |
from tqdm import tqdm | |
from torchvision.utils import make_grid | |
from audioldm2.latent_diffusion.modules.encoders.modules import * | |
from audioldm2.latent_diffusion.util import ( | |
exists, | |
default, | |
count_params, | |
instantiate_from_config, | |
) | |
from audioldm2.latent_diffusion.modules.ema import LitEma | |
from audioldm2.latent_diffusion.modules.distributions.distributions import ( | |
DiagonalGaussianDistribution, | |
) | |
# from latent_encoder.autoencoder import ( | |
# VQModelInterface, | |
# IdentityFirstStage, | |
# AutoencoderKL, | |
# ) | |
from audioldm2.latent_diffusion.modules.diffusionmodules.util import ( | |
make_beta_schedule, | |
extract_into_tensor, | |
noise_like, | |
) | |
from audioldm2.latent_diffusion.models.ddim import DDIMSampler | |
from audioldm2.latent_diffusion.models.plms import PLMSSampler | |
import soundfile as sf | |
import os | |
__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"} | |
# CACHE_DIR = os.getenv( | |
# "AUDIOLDM_CACHE_DIR", os.path.join(os.path.expanduser("~"), ".cache/audioldm2") | |
# ) | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
def uniform_on_device(r1, r2, shape, device): | |
return (r1 - r2) * torch.rand(*shape, device=device) + r2 | |
class DDPM(nn.Module): | |
# classic DDPM with Gaussian diffusion, in image space | |
def __init__( | |
self, | |
unet_config, | |
sampling_rate=None, | |
timesteps=1000, | |
beta_schedule="linear", | |
loss_type="l2", | |
ckpt_path=None, | |
ignore_keys=[], | |
load_only_unet=False, | |
monitor="val/loss", | |
use_ema=True, | |
first_stage_key="image", | |
latent_t_size=256, | |
latent_f_size=16, | |
channels=3, | |
log_every_t=100, | |
clip_denoised=True, | |
linear_start=1e-4, | |
linear_end=2e-2, | |
cosine_s=8e-3, | |
given_betas=None, | |
original_elbo_weight=0.0, | |
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta | |
l_simple_weight=1.0, | |
conditioning_key=None, | |
parameterization="eps", # all assuming fixed variance schedules | |
scheduler_config=None, | |
use_positional_encodings=False, | |
learn_logvar=False, | |
logvar_init=0.0, | |
evaluator=None, | |
device=None, | |
): | |
super().__init__() | |
assert parameterization in [ | |
"eps", | |
"x0", | |
"v", | |
], 'currently only supporting "eps" and "x0" and "v"' | |
self.parameterization = parameterization | |
self.state = None | |
self.device = device | |
# print( | |
# f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode" | |
# ) | |
assert sampling_rate is not None | |
self.validation_folder_name = "temp_name" | |
self.clip_denoised = clip_denoised | |
self.log_every_t = log_every_t | |
self.first_stage_key = first_stage_key | |
self.sampling_rate = sampling_rate | |
self.clap = CLAPAudioEmbeddingClassifierFreev2( | |
pretrained_path="", | |
enable_cuda=self.device=="cuda", | |
sampling_rate=self.sampling_rate, | |
embed_mode="audio", | |
amodel="HTSAT-base", | |
) | |
self.initialize_param_check_toolkit() | |
self.latent_t_size = latent_t_size | |
self.latent_f_size = latent_f_size | |
self.channels = channels | |
self.use_positional_encodings = use_positional_encodings | |
self.model = DiffusionWrapper(unet_config, conditioning_key) | |
count_params(self.model, verbose=True) | |
self.use_ema = use_ema | |
if self.use_ema: | |
self.model_ema = LitEma(self.model) | |
# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
self.use_scheduler = scheduler_config is not None | |
if self.use_scheduler: | |
self.scheduler_config = scheduler_config | |
self.v_posterior = v_posterior | |
self.original_elbo_weight = original_elbo_weight | |
self.l_simple_weight = l_simple_weight | |
if monitor is not None: | |
self.monitor = monitor | |
if ckpt_path is not None: | |
self.init_from_ckpt( | |
ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet | |
) | |
self.register_schedule( | |
given_betas=given_betas, | |
beta_schedule=beta_schedule, | |
timesteps=timesteps, | |
linear_start=linear_start, | |
linear_end=linear_end, | |
cosine_s=cosine_s, | |
) | |
self.loss_type = loss_type | |
self.learn_logvar = learn_logvar | |
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) | |
if self.learn_logvar: | |
self.logvar = nn.Parameter(self.logvar, requires_grad=True) | |
else: | |
self.logvar = nn.Parameter(self.logvar, requires_grad=False) | |
self.logger_save_dir = None | |
self.logger_exp_name = None | |
self.logger_exp_group_name = None | |
self.logger_version = None | |
self.label_indices_total = None | |
# To avoid the system cannot find metric value for checkpoint | |
self.metrics_buffer = { | |
"val/kullback_leibler_divergence_sigmoid": 15.0, | |
"val/kullback_leibler_divergence_softmax": 10.0, | |
"val/psnr": 0.0, | |
"val/ssim": 0.0, | |
"val/inception_score_mean": 1.0, | |
"val/inception_score_std": 0.0, | |
"val/kernel_inception_distance_mean": 0.0, | |
"val/kernel_inception_distance_std": 0.0, | |
"val/frechet_inception_distance": 133.0, | |
"val/frechet_audio_distance": 32.0, | |
} | |
self.initial_learning_rate = None | |
self.test_data_subset_path = None | |
def get_log_dir(self): | |
return os.path.join( | |
self.logger_save_dir, self.logger_exp_group_name, self.logger_exp_name | |
) | |
def set_log_dir(self, save_dir, exp_group_name, exp_name): | |
self.logger_save_dir = save_dir | |
self.logger_exp_group_name = exp_group_name | |
self.logger_exp_name = exp_name | |
def register_schedule( | |
self, | |
given_betas=None, | |
beta_schedule="linear", | |
timesteps=1000, | |
linear_start=1e-4, | |
linear_end=2e-2, | |
cosine_s=8e-3, | |
): | |
if exists(given_betas): | |
betas = given_betas | |
else: | |
betas = make_beta_schedule( | |
beta_schedule, | |
timesteps, | |
linear_start=linear_start, | |
linear_end=linear_end, | |
cosine_s=cosine_s, | |
) | |
alphas = 1.0 - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1]) | |
(timesteps,) = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.linear_start = linear_start | |
self.linear_end = linear_end | |
assert ( | |
alphas_cumprod.shape[0] == self.num_timesteps | |
), "alphas have to be defined for each timestep" | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer("betas", to_torch(betas)) | |
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod)) | |
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer( | |
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod)) | |
) | |
self.register_buffer( | |
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod)) | |
) | |
self.register_buffer( | |
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod)) | |
) | |
self.register_buffer( | |
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1)) | |
) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
posterior_variance = (1 - self.v_posterior) * betas * ( | |
1.0 - alphas_cumprod_prev | |
) / (1.0 - alphas_cumprod) + self.v_posterior * betas | |
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
self.register_buffer("posterior_variance", to_torch(posterior_variance)) | |
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
self.register_buffer( | |
"posterior_log_variance_clipped", | |
to_torch(np.log(np.maximum(posterior_variance, 1e-20))), | |
) | |
self.register_buffer( | |
"posterior_mean_coef1", | |
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)), | |
) | |
self.register_buffer( | |
"posterior_mean_coef2", | |
to_torch( | |
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod) | |
), | |
) | |
if self.parameterization == "eps": | |
lvlb_weights = self.betas**2 / ( | |
2 | |
* self.posterior_variance | |
* to_torch(alphas) | |
* (1 - self.alphas_cumprod) | |
) | |
elif self.parameterization == "x0": | |
lvlb_weights = ( | |
0.5 | |
* np.sqrt(torch.Tensor(alphas_cumprod)) | |
/ (2.0 * 1 - torch.Tensor(alphas_cumprod)) | |
) | |
elif self.parameterization == "v": | |
lvlb_weights = torch.ones_like( | |
self.betas**2 | |
/ ( | |
2 | |
* self.posterior_variance | |
* to_torch(alphas) | |
* (1 - self.alphas_cumprod) | |
) | |
) | |
else: | |
raise NotImplementedError("mu not supported") | |
# TODO how to choose this term | |
lvlb_weights[0] = lvlb_weights[1] | |
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False) | |
assert not torch.isnan(self.lvlb_weights).all() | |
def ema_scope(self, context=None): | |
if self.use_ema: | |
self.model_ema.store(self.model.parameters()) | |
self.model_ema.copy_to(self.model) | |
# if context is not None: | |
# print(f"{context}: Switched to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.model.parameters()) | |
# if context is not None: | |
# print(f"{context}: Restored training weights") | |
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): | |
sd = torch.load(path, map_location="cpu") | |
if "state_dict" in list(sd.keys()): | |
sd = sd["state_dict"] | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
missing, unexpected = ( | |
self.load_state_dict(sd, strict=False) | |
if not only_model | |
else self.model.load_state_dict(sd, strict=False) | |
) | |
print( | |
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys" | |
) | |
if len(missing) > 0: | |
print(f"Missing Keys: {missing}") | |
if len(unexpected) > 0: | |
print(f"Unexpected Keys: {unexpected}") | |
def q_mean_variance(self, x_start, t): | |
""" | |
Get the distribution q(x_t | x_0). | |
:param x_start: the [N x C x ...] tensor of noiseless inputs. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
""" | |
mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
log_variance = extract_into_tensor( | |
self.log_one_minus_alphas_cumprod, t, x_start.shape | |
) | |
return mean, variance, log_variance | |
def predict_start_from_noise(self, x_t, t, noise): | |
return ( | |
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
* noise | |
) | |
def q_posterior(self, x_start, x_t, t): | |
posterior_mean = ( | |
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = extract_into_tensor( | |
self.posterior_log_variance_clipped, t, x_t.shape | |
) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, x, t, clip_denoised: bool): | |
model_out = self.model(x, t) | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
if clip_denoised: | |
x_recon.clamp_(-1.0, 1.0) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior( | |
x_start=x_recon, x_t=x, t=t | |
) | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): | |
b, *_, device = *x.shape, x.device | |
model_mean, _, model_log_variance = self.p_mean_variance( | |
x=x, t=t, clip_denoised=clip_denoised | |
) | |
noise = noise_like(x.shape, device, repeat_noise) | |
# no noise when t == 0 | |
nonzero_mask = ( | |
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous() | |
) | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def p_sample_loop(self, shape, return_intermediates=False): | |
device = self.betas.device | |
b = shape[0] | |
img = torch.randn(shape, device=device) | |
intermediates = [img] | |
for i in tqdm( | |
reversed(range(0, self.num_timesteps)), | |
desc="Sampling t", | |
total=self.num_timesteps, | |
): | |
img = self.p_sample( | |
img, | |
torch.full((b,), i, device=device, dtype=torch.long), | |
clip_denoised=self.clip_denoised, | |
) | |
if i % self.log_every_t == 0 or i == self.num_timesteps - 1: | |
intermediates.append(img) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample(self, batch_size=16, return_intermediates=False): | |
shape = (batch_size, channels, self.latent_t_size, self.latent_f_size) | |
self.channels | |
return self.p_sample_loop(shape, return_intermediates=return_intermediates) | |
def q_sample(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
return ( | |
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) | |
* noise | |
) | |
def get_loss(self, pred, target, mean=True): | |
if self.loss_type == "l1": | |
loss = (target - pred).abs() | |
if mean: | |
loss = loss.mean() | |
elif self.loss_type == "l2": | |
if mean: | |
loss = torch.nn.functional.mse_loss(target, pred) | |
else: | |
loss = torch.nn.functional.mse_loss(target, pred, reduction="none") | |
else: | |
raise NotImplementedError("unknown loss type '{loss_type}'") | |
return loss | |
def predict_start_from_z_and_v(self, x_t, t, v): | |
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
return ( | |
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t | |
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v | |
) | |
def predict_eps_from_z_and_v(self, x_t, t, v): | |
return ( | |
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v | |
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) | |
* x_t | |
) | |
def get_v(self, x, noise, t): | |
return ( | |
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise | |
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x | |
) | |
def forward(self, x, *args, **kwargs): | |
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size | |
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}' | |
t = torch.randint( | |
0, self.num_timesteps, (x.shape[0],), device=self.device | |
).long() | |
return self.p_losses(x, t, *args, **kwargs) | |
def get_input(self, batch, k): | |
# fbank, log_magnitudes_stft, label_indices, fname, waveform, clip_label, text = batch | |
# fbank, stft, label_indices, fname, waveform, text = batch | |
fname, text, waveform, stft, fbank, phoneme_idx = ( | |
batch["fname"], | |
batch["text"], | |
batch["waveform"], | |
batch["stft"], | |
batch["log_mel_spec"], | |
batch["phoneme_idx"] | |
) | |
# for i in range(fbank.size(0)): | |
# fb = fbank[i].numpy() | |
# seg_lb = seg_label[i].numpy() | |
# logits = np.mean(seg_lb, axis=0) | |
# index = np.argsort(logits)[::-1][:5] | |
# plt.imshow(seg_lb[:,index], aspect="auto") | |
# plt.title(index) | |
# plt.savefig("%s_label.png" % i) | |
# plt.close() | |
# plt.imshow(fb, aspect="auto") | |
# plt.savefig("%s_fb.png" % i) | |
# plt.close() | |
ret = {} | |
ret["fbank"] = ( | |
fbank.unsqueeze(1).to(memory_format=torch.contiguous_format).float() | |
) | |
ret["stft"] = stft.to(memory_format=torch.contiguous_format).float() | |
# ret["clip_label"] = clip_label.to(memory | |
# _format=torch.contiguous_format).float() | |
ret["waveform"] = waveform.to(memory_format=torch.contiguous_format).float() | |
ret["phoneme_idx"] = phoneme_idx.to(memory_format=torch.contiguous_format).long() | |
ret["text"] = list(text) | |
ret["fname"] = fname | |
for key in batch.keys(): | |
if key not in ret.keys(): | |
ret[key] = batch[key] | |
return ret[k] | |
def _get_rows_from_list(self, samples): | |
n_imgs_per_row = len(samples) | |
denoise_grid = rearrange(samples, "n b c h w -> b n c h w") | |
denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w") | |
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) | |
return denoise_grid | |
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.first_stage_key) | |
N = min(x.shape[0], N) | |
n_row = min(x.shape[0], n_row) | |
x = x.to(self.device)[:N] | |
log["inputs"] = x | |
# get diffusion row | |
diffusion_row = list() | |
x_start = x[:n_row] | |
for t in range(self.num_timesteps): | |
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
t = repeat(torch.tensor([t]), "1 -> b", b=n_row) | |
t = t.to(self.device).long() | |
noise = torch.randn_like(x_start) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
diffusion_row.append(x_noisy) | |
log["diffusion_row"] = self._get_rows_from_list(diffusion_row) | |
if sample: | |
# get denoise row | |
with self.ema_scope("Plotting"): | |
samples, denoise_row = self.sample( | |
batch_size=N, return_intermediates=True | |
) | |
log["samples"] = samples | |
log["denoise_row"] = self._get_rows_from_list(denoise_row) | |
if return_keys: | |
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: | |
return log | |
else: | |
return {key: log[key] for key in return_keys} | |
return log | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.model.parameters()) | |
if self.learn_logvar: | |
params = params + [self.logvar] | |
opt = torch.optim.AdamW(params, lr=lr) | |
return opt | |
def initialize_param_check_toolkit(self): | |
self.tracked_steps = 0 | |
self.param_dict = {} | |
def statistic_require_grad_tensor_number(self, module, name=None): | |
requires_grad_num = 0 | |
total_num = 0 | |
require_grad_tensor = None | |
for p in module.parameters(): | |
if p.requires_grad: | |
requires_grad_num += 1 | |
if require_grad_tensor is None: | |
require_grad_tensor = p | |
total_num += 1 | |
print( | |
"Module: [%s] have %s trainable parameters out of %s total parameters (%.2f)" | |
% (name, requires_grad_num, total_num, requires_grad_num / total_num) | |
) | |
return require_grad_tensor | |
class LatentDiffusion(DDPM): | |
"""main class""" | |
def __init__( | |
self, | |
first_stage_config, | |
cond_stage_config=None, | |
num_timesteps_cond=None, | |
cond_stage_key="image", | |
optimize_ddpm_parameter=True, | |
unconditional_prob_cfg=0.1, | |
warmup_steps=10000, | |
cond_stage_trainable=False, | |
concat_mode=True, | |
cond_stage_forward=None, | |
conditioning_key=None, | |
scale_factor=1.0, | |
batchsize=None, | |
evaluation_params={}, | |
scale_by_std=False, | |
base_learning_rate=None, | |
*args, | |
**kwargs, | |
): | |
self.learning_rate = base_learning_rate | |
self.num_timesteps_cond = default(num_timesteps_cond, 1) | |
self.scale_by_std = scale_by_std | |
self.warmup_steps = warmup_steps | |
if optimize_ddpm_parameter: | |
if unconditional_prob_cfg == 0.0: | |
"You choose to optimize DDPM. The classifier free guidance scale should be 0.1" | |
unconditional_prob_cfg = 0.1 | |
else: | |
if unconditional_prob_cfg == 0.1: | |
"You choose not to optimize DDPM. The classifier free guidance scale should be 0.0" | |
unconditional_prob_cfg = 0.0 | |
self.evaluation_params = evaluation_params | |
assert self.num_timesteps_cond <= kwargs["timesteps"] | |
# for backwards compatibility after implementation of DiffusionWrapper | |
# if conditioning_key is None: | |
# conditioning_key = "concat" if concat_mode else "crossattn" | |
# if cond_stage_config == "__is_unconditional__": | |
# conditioning_key = None | |
conditioning_key = list(cond_stage_config.keys()) | |
self.conditioning_key = conditioning_key | |
ckpt_path = kwargs.pop("ckpt_path", None) | |
ignore_keys = kwargs.pop("ignore_keys", []) | |
super().__init__(conditioning_key=conditioning_key, *args, **kwargs) | |
self.optimize_ddpm_parameter = optimize_ddpm_parameter | |
# if(not optimize_ddpm_parameter): | |
# print("Warning: Close the optimization of the latent diffusion model") | |
# for p in self.model.parameters(): | |
# p.requires_grad=False | |
self.concat_mode = concat_mode | |
self.cond_stage_key = cond_stage_key | |
self.cond_stage_key_orig = cond_stage_key | |
try: | |
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 | |
except: | |
self.num_downs = 0 | |
if not scale_by_std: | |
self.scale_factor = scale_factor | |
else: | |
self.register_buffer("scale_factor", torch.tensor(scale_factor)) | |
self.instantiate_first_stage(first_stage_config) | |
self.unconditional_prob_cfg = unconditional_prob_cfg | |
self.cond_stage_models = nn.ModuleList([]) | |
self.instantiate_cond_stage(cond_stage_config) | |
self.cond_stage_forward = cond_stage_forward | |
self.clip_denoised = False | |
self.bbox_tokenizer = None | |
self.conditional_dry_run_finished = False | |
self.restarted_from_ckpt = False | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys) | |
self.restarted_from_ckpt = True | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.model.parameters()) | |
for each in self.cond_stage_models: | |
params = params + list( | |
each.parameters() | |
) # Add the parameter from the conditional stage | |
if self.learn_logvar: | |
print("Diffusion model optimizing logvar") | |
params.append(self.logvar) | |
opt = torch.optim.AdamW(params, lr=lr) | |
# if self.use_scheduler: | |
# assert "target" in self.scheduler_config | |
# scheduler = instantiate_from_config(self.scheduler_config) | |
# print("Setting up LambdaLR scheduler...") | |
# scheduler = [ | |
# { | |
# "scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule), | |
# "interval": "step", | |
# "frequency": 1, | |
# } | |
# ] | |
# return [opt], scheduler | |
return opt | |
def make_cond_schedule( | |
self, | |
): | |
self.cond_ids = torch.full( | |
size=(self.num_timesteps,), | |
fill_value=self.num_timesteps - 1, | |
dtype=torch.long, | |
) | |
ids = torch.round( | |
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond) | |
).long() | |
self.cond_ids[: self.num_timesteps_cond] = ids | |
def on_train_batch_start(self, batch, batch_idx): | |
# only for very first batch | |
if ( | |
self.scale_factor == 1 | |
and self.scale_by_std | |
and self.current_epoch == 0 | |
and self.global_step == 0 | |
and batch_idx == 0 | |
and not self.restarted_from_ckpt | |
): | |
# assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' | |
# set rescale weight to 1./std of encodings | |
print("### USING STD-RESCALING ###") | |
x = super().get_input(batch, self.first_stage_key) | |
x = x.to(self.device) | |
encoder_posterior = self.encode_first_stage(x) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
del self.scale_factor | |
self.register_buffer("scale_factor", 1.0 / z.flatten().std()) | |
print(f"setting self.scale_factor to {self.scale_factor}") | |
print("### USING STD-RESCALING ###") | |
def register_schedule( | |
self, | |
given_betas=None, | |
beta_schedule="linear", | |
timesteps=1000, | |
linear_start=1e-4, | |
linear_end=2e-2, | |
cosine_s=8e-3, | |
): | |
super().register_schedule( | |
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s | |
) | |
self.shorten_cond_schedule = self.num_timesteps_cond > 1 | |
if self.shorten_cond_schedule: | |
self.make_cond_schedule() | |
def instantiate_first_stage(self, config): | |
model = instantiate_from_config(config) | |
self.first_stage_model = model.eval() | |
self.first_stage_model.train = disabled_train | |
for param in self.first_stage_model.parameters(): | |
param.requires_grad = False | |
def make_decision(self, probability): | |
if float(torch.rand(1)) < probability: | |
return True | |
else: | |
return False | |
def instantiate_cond_stage(self, config): | |
self.cond_stage_model_metadata = {} | |
for i, cond_model_key in enumerate(config.keys()): | |
if "params" in config[cond_model_key] and "device" in config[cond_model_key]["params"]: | |
config[cond_model_key]["params"]["device"] = self.device | |
model = instantiate_from_config(config[cond_model_key]) | |
model = model.to(self.device) | |
self.cond_stage_models.append(model) | |
self.cond_stage_model_metadata[cond_model_key] = { | |
"model_idx": i, | |
"cond_stage_key": config[cond_model_key]["cond_stage_key"], | |
"conditioning_key": config[cond_model_key]["conditioning_key"], | |
} | |
def get_first_stage_encoding(self, encoder_posterior): | |
if isinstance(encoder_posterior, DiagonalGaussianDistribution): | |
z = encoder_posterior.sample() | |
elif isinstance(encoder_posterior, torch.Tensor): | |
z = encoder_posterior | |
else: | |
raise NotImplementedError( | |
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented" | |
) | |
return self.scale_factor * z | |
def get_learned_conditioning(self, c, key, unconditional_cfg): | |
assert key in self.cond_stage_model_metadata.keys() | |
# Classifier-free guidance | |
if not unconditional_cfg: | |
c = self.cond_stage_models[ | |
self.cond_stage_model_metadata[key]["model_idx"] | |
](c) | |
else: | |
# when the cond_stage_key is "all", pick one random element out | |
if isinstance(c, dict): | |
c = c[list(c.keys())[0]] | |
if isinstance(c, torch.Tensor): | |
batchsize = c.size(0) | |
elif isinstance(c, list): | |
batchsize = len(c) | |
else: | |
raise NotImplementedError() | |
c = self.cond_stage_models[ | |
self.cond_stage_model_metadata[key]["model_idx"] | |
].get_unconditional_condition(batchsize) | |
return c | |
def get_input( | |
self, | |
batch, | |
k, | |
return_first_stage_encode=True, | |
return_decoding_output=False, | |
return_encoder_input=False, | |
return_encoder_output=False, | |
unconditional_prob_cfg=0.1, | |
): | |
x = super().get_input(batch, k) | |
x = x.to(self.device) | |
if return_first_stage_encode: | |
encoder_posterior = self.encode_first_stage(x) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
else: | |
z = None | |
cond_dict = {} | |
if len(self.cond_stage_model_metadata.keys()) > 0: | |
unconditional_cfg = False | |
if self.conditional_dry_run_finished and self.make_decision( | |
unconditional_prob_cfg | |
): | |
unconditional_cfg = True | |
for cond_model_key in self.cond_stage_model_metadata.keys(): | |
cond_stage_key = self.cond_stage_model_metadata[cond_model_key][ | |
"cond_stage_key" | |
] | |
if cond_model_key in cond_dict.keys(): | |
continue | |
# if not self.training: | |
# if isinstance( | |
# self.cond_stage_models[ | |
# self.cond_stage_model_metadata[cond_model_key]["model_idx"] | |
# ], | |
# CLAPAudioEmbeddingClassifierFreev2, | |
# ): | |
# print( | |
# "Warning: CLAP model normally should use text for evaluation" | |
# ) | |
# The original data for conditioning | |
# If cond_model_key is "all", that means the conditional model need all the information from a batch | |
if cond_stage_key != "all": | |
xc = super().get_input(batch, cond_stage_key) | |
if type(xc) == torch.Tensor: | |
xc = xc.to(self.device) | |
else: | |
xc = batch | |
# if cond_stage_key is "all", xc will be a dictionary containing all keys | |
# Otherwise xc will be an entry of the dictionary | |
c = self.get_learned_conditioning( | |
xc, key=cond_model_key, unconditional_cfg=unconditional_cfg | |
) | |
# cond_dict will be used to condition the diffusion model | |
# If one conditional model return multiple conditioning signal | |
if isinstance(c, dict): | |
for k in c.keys(): | |
cond_dict[k] = c[k] | |
else: | |
cond_dict[cond_model_key] = c | |
# If the key is accidently added to the dictionary and not in the condition list, remove the condition | |
# for k in list(cond_dict.keys()): | |
# if(k not in self.cond_stage_model_metadata.keys()): | |
# del cond_dict[k] | |
out = [z, cond_dict] | |
if return_decoding_output: | |
xrec = self.decode_first_stage(z) | |
out += [xrec] | |
if return_encoder_input: | |
out += [x] | |
if return_encoder_output: | |
out += [encoder_posterior] | |
if not self.conditional_dry_run_finished: | |
self.conditional_dry_run_finished = True | |
# Output is a dictionary, where the value could only be tensor or tuple | |
return out | |
def decode_first_stage(self, z): | |
with torch.no_grad(): | |
z = 1.0 / self.scale_factor * z | |
decoding = self.first_stage_model.decode(z) | |
return decoding | |
def mel_spectrogram_to_waveform( | |
self, mel, savepath=".", bs=None, name="outwav", save=True | |
): | |
# Mel: [bs, 1, t-steps, fbins] | |
if len(mel.size()) == 4: | |
mel = mel.squeeze(1) | |
mel = mel.permute(0, 2, 1) | |
waveform = self.first_stage_model.vocoder(mel) | |
waveform = waveform.cpu().detach().numpy() | |
if save: | |
self.save_waveform(waveform, savepath, name) | |
return waveform | |
def encode_first_stage(self, x): | |
with torch.no_grad(): | |
return self.first_stage_model.encode(x) | |
def extract_possible_loss_in_cond_dict(self, cond_dict): | |
# This function enable the conditional module to return loss function that can optimize them | |
assert isinstance(cond_dict, dict) | |
losses = {} | |
for cond_key in cond_dict.keys(): | |
if "loss" in cond_key and "noncond" in cond_key: | |
assert cond_key not in losses.keys() | |
losses[cond_key] = cond_dict[cond_key] | |
return losses | |
def filter_useful_cond_dict(self, cond_dict): | |
new_cond_dict = {} | |
for key in cond_dict.keys(): | |
if key in self.cond_stage_model_metadata.keys(): | |
new_cond_dict[key] = cond_dict[key] | |
# All the conditional key in the metadata should be used | |
for key in self.cond_stage_model_metadata.keys(): | |
assert key in new_cond_dict.keys(), "%s, %s" % ( | |
key, | |
str(new_cond_dict.keys()), | |
) | |
return new_cond_dict | |
def shared_step(self, batch, **kwargs): | |
if self.training: | |
# Classifier-free guidance | |
unconditional_prob_cfg = self.unconditional_prob_cfg | |
else: | |
unconditional_prob_cfg = 0.0 # TODO possible bug here | |
x, c = self.get_input( | |
batch, self.first_stage_key, unconditional_prob_cfg=unconditional_prob_cfg | |
) | |
if self.optimize_ddpm_parameter: | |
loss, loss_dict = self(x, self.filter_useful_cond_dict(c)) | |
else: | |
loss_dict = {} | |
loss = None | |
additional_loss_for_cond_modules = self.extract_possible_loss_in_cond_dict(c) | |
assert isinstance(additional_loss_for_cond_modules, dict) | |
loss_dict.update(additional_loss_for_cond_modules) | |
if len(additional_loss_for_cond_modules.keys()) > 0: | |
for k in additional_loss_for_cond_modules.keys(): | |
if loss is None: | |
loss = additional_loss_for_cond_modules[k] | |
else: | |
loss = loss + additional_loss_for_cond_modules[k] | |
# for k,v in additional_loss_for_cond_modules.items(): | |
# self.log( | |
# "cond_stage/"+k, | |
# float(v), | |
# prog_bar=True, | |
# logger=True, | |
# on_step=True, | |
# on_epoch=True, | |
# ) | |
if self.training: | |
assert loss is not None | |
return loss, loss_dict | |
def forward(self, x, c, *args, **kwargs): | |
t = torch.randint( | |
0, self.num_timesteps, (x.shape[0],), device=self.device | |
).long() | |
# assert c is not None | |
# c = self.get_learned_conditioning(c) | |
loss, loss_dict = self.p_losses(x, c, t, *args, **kwargs) | |
return loss, loss_dict | |
def reorder_cond_dict(self, cond_dict): | |
# To make sure the order is correct | |
new_cond_dict = {} | |
for key in self.conditioning_key: | |
new_cond_dict[key] = cond_dict[key] | |
return new_cond_dict | |
def apply_model(self, x_noisy, t, cond, return_ids=False): | |
cond = self.reorder_cond_dict(cond) | |
x_recon = self.model(x_noisy, t, cond_dict=cond) | |
if isinstance(x_recon, tuple) and not return_ids: | |
return x_recon[0] | |
else: | |
return x_recon | |
def p_losses(self, x_start, cond, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
model_output = self.apply_model(x_noisy, t, cond) | |
loss_dict = {} | |
prefix = "train" if self.training else "val" | |
if self.parameterization == "x0": | |
target = x_start | |
elif self.parameterization == "eps": | |
target = noise | |
elif self.parameterization == "v": | |
target = self.get_v(x_start, noise, t) | |
else: | |
raise NotImplementedError() | |
# print(model_output.size(), target.size()) | |
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) | |
loss_dict.update({f"{prefix}/loss_simple": loss_simple.mean()}) | |
logvar_t = self.logvar[t].to(self.device) | |
loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
# loss = loss_simple / torch.exp(self.logvar) + self.logvar | |
if self.learn_logvar: | |
loss_dict.update({f"{prefix}/loss_gamma": loss.mean()}) | |
loss_dict.update({"logvar": self.logvar.data.mean()}) | |
loss = self.l_simple_weight * loss.mean() | |
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) | |
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
loss_dict.update({f"{prefix}/loss_vlb": loss_vlb}) | |
loss += self.original_elbo_weight * loss_vlb | |
loss_dict.update({f"{prefix}/loss": loss}) | |
return loss, loss_dict | |
def p_mean_variance( | |
self, | |
x, | |
c, | |
t, | |
clip_denoised: bool, | |
return_codebook_ids=False, | |
quantize_denoised=False, | |
return_x0=False, | |
score_corrector=None, | |
corrector_kwargs=None, | |
): | |
t_in = t | |
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) | |
if score_corrector is not None: | |
assert self.parameterization == "eps" | |
model_out = score_corrector.modify_score( | |
self, model_out, x, t, c, **corrector_kwargs | |
) | |
if return_codebook_ids: | |
model_out, logits = model_out | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
else: | |
raise NotImplementedError() | |
if clip_denoised: | |
x_recon.clamp_(-1.0, 1.0) | |
if quantize_denoised: | |
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior( | |
x_start=x_recon, x_t=x, t=t | |
) | |
if return_codebook_ids: | |
return model_mean, posterior_variance, posterior_log_variance, logits | |
elif return_x0: | |
return model_mean, posterior_variance, posterior_log_variance, x_recon | |
else: | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample( | |
self, | |
x, | |
c, | |
t, | |
clip_denoised=False, | |
repeat_noise=False, | |
return_codebook_ids=False, | |
quantize_denoised=False, | |
return_x0=False, | |
temperature=1.0, | |
noise_dropout=0.0, | |
score_corrector=None, | |
corrector_kwargs=None, | |
): | |
b, *_, device = *x.shape, x.device | |
outputs = self.p_mean_variance( | |
x=x, | |
c=c, | |
t=t, | |
clip_denoised=clip_denoised, | |
return_codebook_ids=return_codebook_ids, | |
quantize_denoised=quantize_denoised, | |
return_x0=return_x0, | |
score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, | |
) | |
if return_codebook_ids: | |
raise DeprecationWarning("Support dropped.") | |
model_mean, _, model_log_variance, logits = outputs | |
elif return_x0: | |
model_mean, _, model_log_variance, x0 = outputs | |
else: | |
model_mean, _, model_log_variance = outputs | |
noise = noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.0: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
# no noise when t == 0 | |
nonzero_mask = ( | |
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous() | |
) | |
# if return_codebook_ids: | |
# return model_mean + nonzero_mask * ( | |
# 0.5 * model_log_variance | |
# ).exp() * noise, logits.argmax(dim=1) | |
if return_x0: | |
return ( | |
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, | |
x0, | |
) | |
else: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def progressive_denoising( | |
self, | |
cond, | |
shape, | |
verbose=True, | |
callback=None, | |
quantize_denoised=False, | |
img_callback=None, | |
mask=None, | |
x0=None, | |
temperature=1.0, | |
noise_dropout=0.0, | |
score_corrector=None, | |
corrector_kwargs=None, | |
batch_size=None, | |
x_T=None, | |
start_T=None, | |
log_every_t=None, | |
): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
timesteps = self.num_timesteps | |
if batch_size is not None: | |
b = batch_size if batch_size is not None else shape[0] | |
shape = [batch_size] + list(shape) | |
else: | |
b = batch_size = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=self.device) | |
else: | |
img = x_T | |
intermediates = [] | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = { | |
key: cond[key][:batch_size] | |
if not isinstance(cond[key], list) | |
else list(map(lambda x: x[:batch_size], cond[key])) | |
for key in cond | |
} | |
else: | |
cond = ( | |
[c[:batch_size] for c in cond] | |
if isinstance(cond, list) | |
else cond[:batch_size] | |
) | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = ( | |
tqdm( | |
reversed(range(0, timesteps)), | |
desc="Progressive Generation", | |
total=timesteps, | |
) | |
if verbose | |
else reversed(range(0, timesteps)) | |
) | |
if type(temperature) == float: | |
temperature = [temperature] * timesteps | |
for i in iterator: | |
ts = torch.full((b,), i, device=self.device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != "hybrid" | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img, x0_partial = self.p_sample( | |
img, | |
cond, | |
ts, | |
clip_denoised=self.clip_denoised, | |
quantize_denoised=quantize_denoised, | |
return_x0=True, | |
temperature=temperature[i], | |
noise_dropout=noise_dropout, | |
score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, | |
) | |
if mask is not None: | |
assert x0 is not None | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1.0 - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(x0_partial) | |
if callback: | |
callback(i) | |
if img_callback: | |
img_callback(img, i) | |
return img, intermediates | |
def p_sample_loop( | |
self, | |
cond, | |
shape, | |
return_intermediates=False, | |
x_T=None, | |
verbose=True, | |
callback=None, | |
timesteps=None, | |
quantize_denoised=False, | |
mask=None, | |
x0=None, | |
img_callback=None, | |
start_T=None, | |
log_every_t=None, | |
): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
device = self.betas.device | |
b = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=device) | |
else: | |
img = x_T | |
intermediates = [img] | |
if timesteps is None: | |
timesteps = self.num_timesteps | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = ( | |
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps) | |
if verbose | |
else reversed(range(0, timesteps)) | |
) | |
if mask is not None: | |
assert x0 is not None | |
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match | |
for i in iterator: | |
ts = torch.full((b,), i, device=device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != "hybrid" | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img = self.p_sample( | |
img, | |
cond, | |
ts, | |
clip_denoised=self.clip_denoised, | |
quantize_denoised=quantize_denoised, | |
) | |
if mask is not None: | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1.0 - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(img) | |
if callback: | |
callback(i) | |
if img_callback: | |
img_callback(img, i) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample( | |
self, | |
cond, | |
batch_size=16, | |
return_intermediates=False, | |
x_T=None, | |
verbose=True, | |
timesteps=None, | |
quantize_denoised=False, | |
mask=None, | |
x0=None, | |
shape=None, | |
**kwargs, | |
): | |
if shape is None: | |
shape = (batch_size, self.channels, self.latent_t_size, self.latent_f_size) | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = { | |
key: cond[key][:batch_size] | |
if not isinstance(cond[key], list) | |
else list(map(lambda x: x[:batch_size], cond[key])) | |
for key in cond | |
} | |
else: | |
cond = ( | |
[c[:batch_size] for c in cond] | |
if isinstance(cond, list) | |
else cond[:batch_size] | |
) | |
return self.p_sample_loop( | |
cond, | |
shape, | |
return_intermediates=return_intermediates, | |
x_T=x_T, | |
verbose=verbose, | |
timesteps=timesteps, | |
quantize_denoised=quantize_denoised, | |
mask=mask, | |
x0=x0, | |
**kwargs, | |
) | |
def save_waveform(self, waveform, savepath, name="outwav"): | |
for i in range(waveform.shape[0]): | |
if type(name) is str: | |
path = os.path.join( | |
savepath, "%s_%s_%s.wav" % (self.global_step, i, name) | |
) | |
elif type(name) is list: | |
path = os.path.join( | |
savepath, | |
"%s.wav" | |
% ( | |
os.path.basename(name[i]) | |
if (not ".wav" in name[i]) | |
else os.path.basename(name[i]).split(".")[0] | |
), | |
) | |
else: | |
raise NotImplementedError | |
todo_waveform = waveform[i, 0] | |
todo_waveform = ( | |
todo_waveform / np.max(np.abs(todo_waveform)) | |
) * 0.8 # Normalize the energy of the generation output | |
sf.write(path, todo_waveform, samplerate=self.sampling_rate) | |
def sample_log( | |
self, | |
cond, | |
batch_size, | |
ddim, | |
ddim_steps, | |
unconditional_guidance_scale=1.0, | |
unconditional_conditioning=None, | |
use_plms=False, | |
mask=None, | |
**kwargs, | |
): | |
if mask is not None: | |
shape = (self.channels, mask.size()[-2], mask.size()[-1]) | |
else: | |
shape = (self.channels, self.latent_t_size, self.latent_f_size) | |
intermediate = None | |
if ddim and not use_plms: | |
ddim_sampler = DDIMSampler(self, device=self.device) | |
samples, intermediates = ddim_sampler.sample( | |
ddim_steps, | |
batch_size, | |
shape, | |
cond, | |
verbose=False, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
mask=mask, | |
**kwargs, | |
) | |
elif use_plms: | |
plms_sampler = PLMSSampler(self) | |
samples, intermediates = plms_sampler.sample( | |
ddim_steps, | |
batch_size, | |
shape, | |
cond, | |
verbose=False, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
mask=mask, | |
unconditional_conditioning=unconditional_conditioning, | |
**kwargs, | |
) | |
else: | |
samples, intermediates = self.sample( | |
cond=cond, | |
batch_size=batch_size, | |
return_intermediates=True, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
mask=mask, | |
unconditional_conditioning=unconditional_conditioning, | |
**kwargs, | |
) | |
return samples, intermediate | |
def generate_batch( | |
self, | |
batch, | |
ddim_steps=200, | |
ddim_eta=1.0, | |
x_T=None, | |
n_gen=1, | |
unconditional_guidance_scale=1.0, | |
unconditional_conditioning=None, | |
use_plms=False, | |
**kwargs, | |
): | |
# Generate n_gen times and select the best | |
# Batch: audio, text, fnames | |
assert x_T is None | |
if use_plms: | |
assert ddim_steps is not None | |
use_ddim = ddim_steps is not None | |
# with self.ema_scope("Plotting"): | |
for i in range(1): | |
z, c = self.get_input( | |
batch, | |
self.first_stage_key, | |
unconditional_prob_cfg=0.0, # Do not output unconditional information in the c | |
) | |
c = self.filter_useful_cond_dict(c) | |
text = super().get_input(batch, "text") | |
# Generate multiple samples | |
batch_size = z.shape[0] * n_gen | |
# Generate multiple samples at a time and filter out the best | |
# The condition to the diffusion wrapper can have many format | |
for cond_key in c.keys(): | |
if isinstance(c[cond_key], list): | |
for i in range(len(c[cond_key])): | |
c[cond_key][i] = torch.cat([c[cond_key][i]] * n_gen, dim=0) | |
elif isinstance(c[cond_key], dict): | |
for k in c[cond_key].keys(): | |
c[cond_key][k] = torch.cat([c[cond_key][k]] * n_gen, dim=0) | |
else: | |
c[cond_key] = torch.cat([c[cond_key]] * n_gen, dim=0) | |
text = text * n_gen | |
if unconditional_guidance_scale != 1.0: | |
unconditional_conditioning = {} | |
for key in self.cond_stage_model_metadata: | |
model_idx = self.cond_stage_model_metadata[key]["model_idx"] | |
unconditional_conditioning[key] = self.cond_stage_models[ | |
model_idx | |
].get_unconditional_condition(batch_size) | |
fnames = list(super().get_input(batch, "fname")) | |
samples, _ = self.sample_log( | |
cond=c, | |
batch_size=batch_size, | |
x_T=x_T, | |
ddim=use_ddim, | |
ddim_steps=ddim_steps, | |
eta=ddim_eta, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
use_plms=use_plms, | |
) | |
mel = self.decode_first_stage(samples) | |
waveform = self.mel_spectrogram_to_waveform( | |
mel, savepath="", bs=None, name=fnames, save=False | |
) | |
if n_gen > 1: | |
best_index = [] | |
similarity = self.clap.cos_similarity( | |
torch.FloatTensor(waveform).squeeze(1), text | |
) | |
for i in range(z.shape[0]): | |
candidates = similarity[i :: z.shape[0]] | |
max_index = torch.argmax(candidates).item() | |
best_index.append(i + max_index * z.shape[0]) | |
waveform = waveform[best_index] | |
print("Similarity between generated audio and text:") | |
print(' '.join('{:.2f}'.format(num) for num in similarity.detach().cpu().tolist())) | |
print("Choose the following indexes as the output:", best_index) | |
return waveform | |
def generate_sample( | |
self, | |
batchs, | |
ddim_steps=200, | |
ddim_eta=1.0, | |
x_T=None, | |
n_gen=1, | |
unconditional_guidance_scale=1.0, | |
unconditional_conditioning=None, | |
name=None, | |
use_plms=False, | |
limit_num=None, | |
**kwargs, | |
): | |
# Generate n_gen times and select the best | |
# Batch: audio, text, fnames | |
assert x_T is None | |
try: | |
batchs = iter(batchs) | |
except TypeError: | |
raise ValueError("The first input argument should be an iterable object") | |
if use_plms: | |
assert ddim_steps is not None | |
use_ddim = ddim_steps is not None | |
if name is None: | |
name = self.get_validation_folder_name() | |
waveform_save_path = os.path.join(self.get_log_dir(), name) | |
os.makedirs(waveform_save_path, exist_ok=True) | |
print("Waveform save path: ", waveform_save_path) | |
if ( | |
"audiocaps" in waveform_save_path | |
and len(os.listdir(waveform_save_path)) >= 964 | |
): | |
print("The evaluation has already been done at %s" % waveform_save_path) | |
return waveform_save_path | |
with self.ema_scope("Plotting"): | |
for i, batch in enumerate(batchs): | |
z, c = self.get_input( | |
batch, | |
self.first_stage_key, | |
unconditional_prob_cfg=0.0, # Do not output unconditional information in the c | |
) | |
if limit_num is not None and i * z.size(0) > limit_num: | |
break | |
c = self.filter_useful_cond_dict(c) | |
text = super().get_input(batch, "text") | |
# Generate multiple samples | |
batch_size = z.shape[0] * n_gen | |
# Generate multiple samples at a time and filter out the best | |
# The condition to the diffusion wrapper can have many format | |
for cond_key in c.keys(): | |
if isinstance(c[cond_key], list): | |
for i in range(len(c[cond_key])): | |
c[cond_key][i] = torch.cat([c[cond_key][i]] * n_gen, dim=0) | |
elif isinstance(c[cond_key], dict): | |
for k in c[cond_key].keys(): | |
c[cond_key][k] = torch.cat([c[cond_key][k]] * n_gen, dim=0) | |
else: | |
c[cond_key] = torch.cat([c[cond_key]] * n_gen, dim=0) | |
text = text * n_gen | |
if unconditional_guidance_scale != 1.0: | |
unconditional_conditioning = {} | |
for key in self.cond_stage_model_metadata: | |
model_idx = self.cond_stage_model_metadata[key]["model_idx"] | |
unconditional_conditioning[key] = self.cond_stage_models[ | |
model_idx | |
].get_unconditional_condition(batch_size) | |
fnames = list(super().get_input(batch, "fname")) | |
samples, _ = self.sample_log( | |
cond=c, | |
batch_size=batch_size, | |
x_T=x_T, | |
ddim=use_ddim, | |
ddim_steps=ddim_steps, | |
eta=ddim_eta, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
use_plms=use_plms, | |
) | |
mel = self.decode_first_stage(samples) | |
waveform = self.mel_spectrogram_to_waveform( | |
mel, savepath=waveform_save_path, bs=None, name=fnames, save=False | |
) | |
if n_gen > 1: | |
try: | |
best_index = [] | |
similarity = self.clap.cos_similarity( | |
torch.FloatTensor(waveform).squeeze(1), text | |
) | |
for i in range(z.shape[0]): | |
candidates = similarity[i :: z.shape[0]] | |
max_index = torch.argmax(candidates).item() | |
best_index.append(i + max_index * z.shape[0]) | |
waveform = waveform[best_index] | |
print("Similarity between generated audio and text", similarity) | |
print("Choose the following indexes:", best_index) | |
except Exception as e: | |
print("Warning: while calculating CLAP score (not fatal), ", e) | |
self.save_waveform(waveform, waveform_save_path, name=fnames) | |
return waveform_save_path | |
class DiffusionWrapper(nn.Module): | |
def __init__(self, diff_model_config, conditioning_key): | |
super().__init__() | |
self.diffusion_model = instantiate_from_config(diff_model_config) | |
self.conditioning_key = conditioning_key | |
for key in self.conditioning_key: | |
if ( | |
"concat" in key | |
or "crossattn" in key | |
or "hybrid" in key | |
or "film" in key | |
or "noncond" in key | |
): | |
continue | |
else: | |
raise Value("The conditioning key %s is illegal" % key) | |
self.being_verbosed_once = False | |
def forward(self, x, t, cond_dict: dict = {}): | |
x = x.contiguous() | |
t = t.contiguous() | |
# x with condition (or maybe not) | |
xc = x | |
y = None | |
context_list, attn_mask_list = [], [] | |
conditional_keys = cond_dict.keys() | |
for key in conditional_keys: | |
if "concat" in key: | |
xc = torch.cat([x, cond_dict[key].unsqueeze(1)], dim=1) | |
elif "film" in key: | |
if y is None: | |
y = cond_dict[key].squeeze(1) | |
else: | |
y = torch.cat([y, cond_dict[key].squeeze(1)], dim=-1) | |
elif "crossattn" in key: | |
# assert context is None, "You can only have one context matrix, got %s" % (cond_dict.keys()) | |
if isinstance(cond_dict[key], dict): | |
for k in cond_dict[key].keys(): | |
if "crossattn" in k: | |
context, attn_mask = cond_dict[key][ | |
k | |
] # crossattn_audiomae_pooled: torch.Size([12, 128, 768]) | |
else: | |
assert len(cond_dict[key]) == 2, ( | |
"The context condition for %s you returned should have two element, one context one mask" | |
% (key) | |
) | |
context, attn_mask = cond_dict[key] | |
# The input to the UNet model is a list of context matrix | |
context_list.append(context) | |
attn_mask_list.append(attn_mask) | |
elif ( | |
"noncond" in key | |
): # If you use loss function in the conditional module, include the keyword "noncond" in the return dictionary | |
continue | |
else: | |
raise NotImplementedError() | |
# if(not self.being_verbosed_once): | |
# print("The input shape to the diffusion model is as follows:") | |
# print("xc", xc.size()) | |
# print("t", t.size()) | |
# for i in range(len(context_list)): | |
# print("context_%s" % i, context_list[i].size(), attn_mask_list[i].size()) | |
# if(y is not None): | |
# print("y", y.size()) | |
# self.being_verbosed_once = True | |
out = self.diffusion_model( | |
xc, t, context_list=context_list, y=y, context_attn_mask_list=attn_mask_list | |
) | |
return out | |
self.warmup_step() | |
if ( | |
self.state is None | |
and len(self.trainer.optimizers[0].state_dict()["state"].keys()) > 0 | |
): | |
self.state = ( | |
self.trainer.optimizers[0].state_dict()["state"][0]["exp_avg"].clone() | |
) | |
elif self.state is not None and batch_idx % 1000 == 0: | |
assert ( | |
torch.sum( | |
torch.abs( | |
self.state | |
- self.trainer.optimizers[0].state_dict()["state"][0]["exp_avg"] | |
) | |
) | |
> 1e-7 | |
), "Optimizer is not working" | |
if len(self.metrics_buffer.keys()) > 0: | |
for k in self.metrics_buffer.keys(): | |
self.log( | |
k, | |
self.metrics_buffer[k], | |
prog_bar=False, | |
logger=True, | |
on_step=True, | |
on_epoch=False, | |
) | |
print(k, self.metrics_buffer[k]) | |
self.metrics_buffer = {} | |
loss, loss_dict = self.shared_step(batch) | |
self.log_dict( | |
{k: float(v) for k, v in loss_dict.items()}, | |
prog_bar=True, | |
logger=True, | |
on_step=True, | |
on_epoch=True, | |
) | |
self.log( | |
"global_step", | |
float(self.global_step), | |
prog_bar=True, | |
logger=True, | |
on_step=True, | |
on_epoch=False, | |
) | |
lr = self.trainer.optimizers[0].param_groups[0]["lr"] | |
self.log( | |
"lr_abs", | |
float(lr), | |
prog_bar=True, | |
logger=True, | |
on_step=True, | |
on_epoch=False, | |
) | |
if __name__ == "__main__": | |
import yaml | |
model_config = "/mnt/fast/nobackup/users/hl01486/projects/general_audio_generation/stable-diffusion/models/ldm/text2img256/config.yaml" | |
model_config = yaml.load(open(model_config, "r"), Loader=yaml.FullLoader) | |
latent_diffusion = LatentDiffusion(**model_config["model"]["params"]) | |
import ipdb | |
ipdb.set_trace() | |