Trent
Clustering function
883e41e
raw
history blame
4.42 kB
import gzip
import json
from collections import Counter
import pandas as pd
import numpy as np
import jax.numpy as jnp
import tqdm
from sentence_transformers import util
from typing import List, Union
import torch
from backend.utils import load_model, filter_questions, load_embeddings
from MulticoreTSNE import MulticoreTSNE as TSNE
def cos_sim(a, b):
return jnp.matmul(a, jnp.transpose(b)) / (jnp.linalg.norm(a) * jnp.linalg.norm(b))
# We get similarity between embeddings.
def text_similarity(anchor: str, inputs: List[str], model_name: str, model_dict: dict):
print(model_name)
model = load_model(model_name, model_dict)
# Creating embeddings
if hasattr(model, 'encode'):
anchor_emb = model.encode(anchor)[None, :]
inputs_emb = model.encode(inputs)
else:
assert len(model) == 2
anchor_emb = model[0].encode(anchor)[None, :]
inputs_emb = model[1].encode(inputs)
# Obtaining similarity
similarity = list(jnp.squeeze(cos_sim(anchor_emb, inputs_emb)))
# Returning a Pandas' dataframe
d = {'inputs': inputs,
'score': [round(similarity[i], 3) for i in range(len(similarity))]}
df = pd.DataFrame(d, columns=['inputs', 'score'])
return df
# Search
def text_search(anchor: str, n_answers: int, model_name: str, model_dict: dict):
# Proceeding with model
print(model_name)
assert model_name == "mpnet_qa"
model = load_model(model_name, model_dict)
# Creating embeddings
query_emb = model.encode(anchor, convert_to_tensor=True)[None, :]
print("loading embeddings")
corpus_emb = load_embeddings()
# Getting hits
hits = util.semantic_search(query_emb, corpus_emb, score_function=util.dot_score, top_k=n_answers)[0]
filtered_posts = filter_questions("python")
print(f"{len(filtered_posts)} posts found with tag: python")
hits_titles = []
hits_scores = []
urls = []
for hit in hits:
post = filtered_posts[hit['corpus_id']]
hits_titles.append(post['title'])
hits_scores.append("{:.3f}".format(hit['score']))
urls.append(f"https://stackoverflow.com/q/{post['id']}")
return hits_titles, hits_scores, urls
def text_cluster(anchor: str, n_answers: int, model_name: str, model_dict: dict):
# Proceeding with model
print(model_name)
assert model_name == "mpnet_qa"
model = load_model(model_name, model_dict)
# Creating embeddings
query_emb = model.encode(anchor, convert_to_tensor=True)[None, :]
print("loading embeddings")
corpus_emb = load_embeddings()
# Getting hits
hits = util.semantic_search(query_emb, corpus_emb, score_function=util.dot_score, top_k=n_answers)[0]
filtered_posts = filter_questions("python")
hits_dict = [filtered_posts[hit['corpus_id']] for hit in hits]
hits_dict.append(dict(id = '1', title = anchor, tags = ['']))
hits_emb = torch.stack([corpus_emb[hit['corpus_id']] for hit in hits])
hits_emb = torch.cat((hits_emb, query_emb))
# Dimensionality reduction with t-SNE
tsne = TSNE(n_components=3, verbose=1, perplexity=15, n_iter=1000)
tsne_results = tsne.fit_transform(hits_emb.cpu())
df = pd.DataFrame(hits_dict)
tags = list(df['tags'])
counter = Counter(tags[0])
for i in tags[1:]:
counter.update(i)
df_tags = pd.DataFrame(counter.most_common(), columns=['Tag', 'Mentions'])
most_common_tags = list(df_tags['Tag'])[1:5]
labels = []
for tags_list in list(df['tags']):
for common_tag in most_common_tags:
if common_tag in tags_list:
labels.append(common_tag)
break
elif common_tag != most_common_tags[-1]:
continue
else:
labels.append('others')
df['title'] = [post['title'] for post in hits_dict]
df['labels'] = labels
df['tsne_x'] = tsne_results[:, 0]
df['tsne_y'] = tsne_results[:, 1]
df['tsne_z'] = tsne_results[:, 2]
df['size'] = [2 for i in range(len(df))]
# Making the query bigger than the rest of the observations
df['size'][len(df) - 1] = 10
df['labels'][len(df) - 1] = 'QUERY'
import plotly.express as px
fig = px.scatter_3d(df, x='tsne_x', y='tsne_y', z='tsne_z', color='labels', size='size',
color_discrete_sequence=px.colors.qualitative.D3, hover_data=[df.title])
return fig