Trent
Use distilbert
73ee9f2
raw
history blame
1.37 kB
import gzip
import json
import numpy as np
import streamlit as st
import torch
import tqdm
from sentence_transformers import SentenceTransformer
@st.cache(allow_output_mutation=True)
def load_model(model_name, model_dict):
assert model_name in model_dict.keys()
# Lazy downloading
model_ids = model_dict[model_name]
if type(model_ids) == str:
output = SentenceTransformer(model_ids)
elif hasattr(model_ids, '__iter__'):
output = [SentenceTransformer(name) for name in model_ids]
return output
@st.cache(allow_output_mutation=True)
def load_embeddings():
# embedding pre-generated
corpus_emb = torch.from_numpy(np.loadtxt('./data/stackoverflow-titles-distilbert-emb.csv', max_rows=10000))
return corpus_emb.float()
@st.cache(allow_output_mutation=True)
def filter_questions(tag, max_questions=10000):
posts = []
max_posts = 6e6
with gzip.open("./data/stackoverflow-titles.jsonl.gz", "rt") as fIn:
for line in tqdm.auto.tqdm(fIn, total=max_posts, desc="Load data"):
posts.append(json.loads(line))
if len(posts) >= max_posts:
break
filtered_posts = []
for post in posts:
if tag in post["tags"]:
filtered_posts.append(post)
if len(filtered_posts) >= max_questions:
break
return filtered_posts