bhavitvyamalik's picture
add utils
270ef28
raw
history blame
1.75 kB
from torchvision.io import read_image, ImageReadMode
import torch
import numpy as np
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
from torchvision.transforms.functional import InterpolationMode
from transformers import MBart50TokenizerFast
import json
from PIL import Image
class Transform(torch.nn.Module):
def __init__(self, image_size):
super().__init__()
self.transforms = torch.nn.Sequential(
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
CenterCrop(image_size),
ConvertImageDtype(torch.float),
Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.no_grad():
x = self.transforms(x)
return x
transform = Transform(224)
def get_transformed_image(image):
if image.shape[-1] == 3 and isinstance(image, np.ndarray):
image = image.transpose(2, 0, 1)
image = torch.tensor(image)
return transform(image).unsqueeze(0).permute(0, 2, 3, 1).numpy()
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50")
language_mapping = {
"english": "en_XX",
"german": "de_DE",
"french": "fr_XX",
"spanish": "es_XX"
}
def generate_sequence(model, pixel_values, lang_code):
lang_code = language_mapping[lang_code]
output_ids = model.generate(input_ids=pixel_values, decoder_start_token_id=tokenizer.lang_code_to_id[lang_code], max_length=64, num_beams=4)
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=64)
return output_sequence