Spaces:
Running
Running
Merge branch 'main' into chore-cleanup2
Browse filesFormer-commit-id: fceea4c2ebba28dd9c0b43b92c2a0af41fc18bb3
- README.md +3 -3
- app/app_gradio.py +49 -13
- app/sample_images/image_0.jpg +0 -0
- app/sample_images/image_1.jpg +0 -0
- app/sample_images/image_2.jpg +0 -0
- app/sample_images/image_3.jpg +0 -0
- app/sample_images/image_4.jpg +0 -0
- app/sample_images/image_5.jpg +0 -0
- app/sample_images/image_6.jpg +0 -0
- app/sample_images/image_7.jpg +0 -0
- app/sample_images/readme.txt +1 -0
- app/ui_gradio.py +91 -0
- demo/model-sweep.py +220 -0
- demo/wandb-examples.py +1 -1
README.md
CHANGED
@@ -3,8 +3,8 @@ title: Dalle Mini
|
|
3 |
emoji: 🎨
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
6 |
-
sdk:
|
7 |
-
app_file: app/
|
8 |
pinned: false
|
9 |
---
|
10 |
|
@@ -18,7 +18,7 @@ TODO: add some cool example
|
|
18 |
|
19 |
## How does it work?
|
20 |
|
21 |
-
Refer to [our report](
|
22 |
|
23 |
## Development
|
24 |
|
|
|
3 |
emoji: 🎨
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
6 |
+
sdk: gradio
|
7 |
+
app_file: app/app_gradio.py
|
8 |
pinned: false
|
9 |
---
|
10 |
|
|
|
18 |
|
19 |
## How does it work?
|
20 |
|
21 |
+
Refer to [our report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA).
|
22 |
|
23 |
## Development
|
24 |
|
app/app_gradio.py
CHANGED
@@ -163,7 +163,7 @@ def clip_top_k(prompt, images, k=8):
|
|
163 |
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
164 |
return [images[score] for score in scores]
|
165 |
|
166 |
-
def
|
167 |
increased_h = 0 if caption is None else 48
|
168 |
w, h = images[0].size[0], images[0].size[1]
|
169 |
img = Image.new("RGB", (len(images)*w, h + increased_h))
|
@@ -176,19 +176,55 @@ def captioned_strip(images, caption):
|
|
176 |
draw.text((20, 3), caption, (255,255,255), font=font)
|
177 |
return img
|
178 |
|
179 |
-
def
|
180 |
-
images = hallucinate(prompt, num_images=
|
181 |
-
images = clip_top_k(prompt, images, k=
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
gr.Interface(run_inference,
|
186 |
inputs=[gr.inputs.Textbox(label='Prompt')], #, gr.inputs.Slider(1,64,1,8, label='Candidates to generate'), gr.inputs.Slider(1,8,1,1, label='Best predictions to show')],
|
187 |
-
outputs=
|
188 |
-
title='
|
189 |
-
description=
|
190 |
-
article="<p style='text-align: center'> DALLE
|
191 |
layout='vertical',
|
192 |
theme='huggingface',
|
193 |
-
examples=[['an armchair in the shape of an avocado']],
|
194 |
-
|
|
|
|
|
|
|
|
163 |
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
164 |
return [images[score] for score in scores]
|
165 |
|
166 |
+
def compose_predictions(images, caption=None):
|
167 |
increased_h = 0 if caption is None else 48
|
168 |
w, h = images[0].size[0], images[0].size[1]
|
169 |
img = Image.new("RGB", (len(images)*w, h + increased_h))
|
|
|
176 |
draw.text((20, 3), caption, (255,255,255), font=font)
|
177 |
return img
|
178 |
|
179 |
+
def top_k_predictions(prompt, num_candidates=32, k=8):
|
180 |
+
images = hallucinate(prompt, num_images=num_candidates)
|
181 |
+
images = clip_top_k(prompt, images, k=k)
|
182 |
+
return images
|
183 |
+
|
184 |
+
def run_inference(prompt, num_images=32, num_preds=8):
|
185 |
+
images = top_k_predictions(prompt, num_candidates=num_images, k=num_preds)
|
186 |
+
predictions = compose_predictions(images)
|
187 |
+
output_title = f"""
|
188 |
+
<p style="font-size:22px; font-style:bold">Best predictions</p>
|
189 |
+
<p>We asked our model to generate 32 candidates for your prompt:</p>
|
190 |
+
|
191 |
+
<pre>
|
192 |
+
|
193 |
+
<b>{prompt}</b>
|
194 |
+
</pre>
|
195 |
+
<p>We then used a pre-trained <a href="https://huggingface.co/openai/clip-vit-base-patch32">CLIP model</a> to score them according to the
|
196 |
+
similarity of the text and the image representations.</p>
|
197 |
+
|
198 |
+
<p>This is the result:</p>
|
199 |
+
"""
|
200 |
+
output_description = """
|
201 |
+
<p>Read more about the process <a href="https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA">in our report</a>.<p>
|
202 |
+
<p style='text-align: center'>Created with <a href="https://github.com/borisdayma/dalle-mini">DALLE·mini</a></p>
|
203 |
+
"""
|
204 |
+
return (output_title, predictions, output_description)
|
205 |
+
|
206 |
+
outputs = [
|
207 |
+
gr.outputs.HTML(label=""), # To be used as title
|
208 |
+
gr.outputs.Image(label=''),
|
209 |
+
gr.outputs.HTML(label=""), # Additional text that appears in the screenshot
|
210 |
+
]
|
211 |
+
|
212 |
+
description = """
|
213 |
+
Welcome to our demo of DALL·E-mini. This project was created on TPU v3-8s during the 🤗 Flax / JAX Community Week.
|
214 |
+
It reproduces the essential characteristics of OpenAI's DALL·E, at a fraction of the size.
|
215 |
+
|
216 |
+
Please, write what you would like the model to generate, or select one of the examples below.
|
217 |
+
"""
|
218 |
gr.Interface(run_inference,
|
219 |
inputs=[gr.inputs.Textbox(label='Prompt')], #, gr.inputs.Slider(1,64,1,8, label='Candidates to generate'), gr.inputs.Slider(1,8,1,1, label='Best predictions to show')],
|
220 |
+
outputs=outputs,
|
221 |
+
title='DALL·E mini',
|
222 |
+
description=description,
|
223 |
+
article="<p style='text-align: center'> DALLE·mini by Boris Dayma et al. | <a href='https://github.com/borisdayma/dalle-mini'>GitHub</a></p>",
|
224 |
layout='vertical',
|
225 |
theme='huggingface',
|
226 |
+
examples=[['an armchair in the shape of an avocado'], ['snowy mountains by the sea']],
|
227 |
+
allow_flagging=False,
|
228 |
+
live=False,
|
229 |
+
# server_port=8999
|
230 |
+
).launch()
|
app/sample_images/image_0.jpg
ADDED
app/sample_images/image_1.jpg
ADDED
app/sample_images/image_2.jpg
ADDED
app/sample_images/image_3.jpg
ADDED
app/sample_images/image_4.jpg
ADDED
app/sample_images/image_5.jpg
ADDED
app/sample_images/image_6.jpg
ADDED
app/sample_images/image_7.jpg
ADDED
app/sample_images/readme.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
These images were generated by one of our checkpoints, as responses to the prompt "snowy mountains by the sea".
|
app/ui_gradio.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
def compose_predictions(images, caption=None):
|
8 |
+
increased_h = 0 if caption is None else 48
|
9 |
+
w, h = images[0].size[0], images[0].size[1]
|
10 |
+
img = Image.new("RGB", (len(images)*w, h + increased_h))
|
11 |
+
for i, img_ in enumerate(images):
|
12 |
+
img.paste(img_, (i*w, increased_h))
|
13 |
+
|
14 |
+
if caption is not None:
|
15 |
+
draw = ImageDraw.Draw(img)
|
16 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40)
|
17 |
+
draw.text((20, 3), caption, (255,255,255), font=font)
|
18 |
+
return img
|
19 |
+
|
20 |
+
def compose_predictions_grid(images):
|
21 |
+
cols = 4
|
22 |
+
rows = len(images) // cols
|
23 |
+
w, h = images[0].size[0], images[0].size[1]
|
24 |
+
img = Image.new("RGB", (w * cols, h * rows))
|
25 |
+
for i, img_ in enumerate(images):
|
26 |
+
row = i // cols
|
27 |
+
col = i % cols
|
28 |
+
img.paste(img_, (w * col, h * row))
|
29 |
+
return img
|
30 |
+
|
31 |
+
def top_k_predictions_real(prompt, num_candidates=32, k=8):
|
32 |
+
images = hallucinate(prompt, num_images=num_candidates)
|
33 |
+
images = clip_top_k(prompt, images, k=num_preds)
|
34 |
+
return images
|
35 |
+
|
36 |
+
def top_k_predictions(prompt, num_candidates=32, k=8):
|
37 |
+
images = []
|
38 |
+
for i in range(k):
|
39 |
+
image = Image.open(f"sample_images/image_{i}.jpg")
|
40 |
+
images.append(image)
|
41 |
+
return images
|
42 |
+
|
43 |
+
def run_inference(prompt, num_images=32, num_preds=8):
|
44 |
+
images = top_k_predictions(prompt, num_candidates=num_images, k=num_preds)
|
45 |
+
predictions = compose_predictions(images)
|
46 |
+
output_title = f"""
|
47 |
+
<p style="font-size:22px; font-style:bold">Best predictions</p>
|
48 |
+
<p>We asked our model to generate 32 candidates for your prompt:</p>
|
49 |
+
|
50 |
+
<pre>
|
51 |
+
|
52 |
+
<b>{prompt}</b>
|
53 |
+
</pre>
|
54 |
+
<p>We then used a pre-trained <a href="https://huggingface.co/openai/clip-vit-base-patch32">CLIP model</a> to score them according to the
|
55 |
+
similarity of the text and the image representations.</p>
|
56 |
+
|
57 |
+
<p>This is the result:</p>
|
58 |
+
"""
|
59 |
+
output_description = """
|
60 |
+
<p>Read more about the process <a href="https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA">in our report</a>.<p>
|
61 |
+
<p style='text-align: center'>Created with <a href="https://github.com/borisdayma/dalle-mini">DALLE·mini</a></p>
|
62 |
+
"""
|
63 |
+
return (output_title, predictions, output_description)
|
64 |
+
|
65 |
+
outputs = [
|
66 |
+
gr.outputs.HTML(label=""), # To be used as title
|
67 |
+
gr.outputs.Image(label=''),
|
68 |
+
gr.outputs.HTML(label=""), # Additional text that appears in the screenshot
|
69 |
+
]
|
70 |
+
|
71 |
+
description = """
|
72 |
+
Welcome to our demo of DALL·E-mini. This project was created on TPU v3-8s during the 🤗 Flax / JAX Community Week.
|
73 |
+
It reproduces the essential characteristics of OpenAI's DALL·E, at a fraction of the size.
|
74 |
+
|
75 |
+
Please, write what you would like the model to generate, or select one of the examples below.
|
76 |
+
"""
|
77 |
+
gr.Interface(run_inference,
|
78 |
+
inputs=[gr.inputs.Textbox(label='Prompt')], #, gr.inputs.Slider(1,64,1,8, label='Candidates to generate'), gr.inputs.Slider(1,8,1,1, label='Best predictions to show')],
|
79 |
+
outputs=outputs,
|
80 |
+
title='DALL·E mini',
|
81 |
+
description=description,
|
82 |
+
article="<p style='text-align: center'> DALLE·mini by Boris Dayma et al. | <a href='https://github.com/borisdayma/dalle-mini'>GitHub</a></p>",
|
83 |
+
layout='vertical',
|
84 |
+
theme='huggingface',
|
85 |
+
examples=[['an armchair in the shape of an avocado'], ['snowy mountains by the sea']],
|
86 |
+
allow_flagging=False,
|
87 |
+
live=False,
|
88 |
+
server_port=8999
|
89 |
+
).launch(
|
90 |
+
share=True # Creates temporary public link if true
|
91 |
+
)
|
demo/model-sweep.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
import random
|
5 |
+
|
6 |
+
import jax
|
7 |
+
import flax.linen as nn
|
8 |
+
from flax.training.common_utils import shard
|
9 |
+
from flax.jax_utils import replicate, unreplicate
|
10 |
+
|
11 |
+
from transformers.models.bart.modeling_flax_bart import *
|
12 |
+
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
13 |
+
|
14 |
+
import io
|
15 |
+
|
16 |
+
import requests
|
17 |
+
from PIL import Image
|
18 |
+
import numpy as np
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torchvision.transforms as T
|
23 |
+
import torchvision.transforms.functional as TF
|
24 |
+
from torchvision.transforms import InterpolationMode
|
25 |
+
|
26 |
+
from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel
|
27 |
+
|
28 |
+
# TODO: set those args in a config file
|
29 |
+
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
30 |
+
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
31 |
+
BOS_TOKEN_ID = 16384
|
32 |
+
BASE_MODEL = 'facebook/bart-large-cnn'
|
33 |
+
WANDB_MODEL = '3iwhu4w6'
|
34 |
+
|
35 |
+
class CustomFlaxBartModule(FlaxBartModule):
|
36 |
+
def setup(self):
|
37 |
+
# we keep shared to easily load pre-trained weights
|
38 |
+
self.shared = nn.Embed(
|
39 |
+
self.config.vocab_size,
|
40 |
+
self.config.d_model,
|
41 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
42 |
+
dtype=self.dtype,
|
43 |
+
)
|
44 |
+
# a separate embedding is used for the decoder
|
45 |
+
self.decoder_embed = nn.Embed(
|
46 |
+
OUTPUT_VOCAB_SIZE,
|
47 |
+
self.config.d_model,
|
48 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
49 |
+
dtype=self.dtype,
|
50 |
+
)
|
51 |
+
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
52 |
+
|
53 |
+
# the decoder has a different config
|
54 |
+
decoder_config = BartConfig(self.config.to_dict())
|
55 |
+
decoder_config.max_position_embeddings = OUTPUT_LENGTH
|
56 |
+
decoder_config.vocab_size = OUTPUT_VOCAB_SIZE
|
57 |
+
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
|
58 |
+
|
59 |
+
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
60 |
+
def setup(self):
|
61 |
+
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
62 |
+
self.lm_head = nn.Dense(
|
63 |
+
OUTPUT_VOCAB_SIZE,
|
64 |
+
use_bias=False,
|
65 |
+
dtype=self.dtype,
|
66 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
67 |
+
)
|
68 |
+
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE))
|
69 |
+
|
70 |
+
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
71 |
+
module_class = CustomFlaxBartForConditionalGenerationModule
|
72 |
+
|
73 |
+
tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)
|
74 |
+
vqgan = VQModel.from_pretrained("flax-community/vqgan_f16_16384")
|
75 |
+
|
76 |
+
def custom_to_pil(x):
|
77 |
+
x = np.clip(x, 0., 1.)
|
78 |
+
x = (255*x).astype(np.uint8)
|
79 |
+
x = Image.fromarray(x)
|
80 |
+
if not x.mode == "RGB":
|
81 |
+
x = x.convert("RGB")
|
82 |
+
return x
|
83 |
+
|
84 |
+
def generate(input, rng, params):
|
85 |
+
return model.generate(
|
86 |
+
**input,
|
87 |
+
max_length=257,
|
88 |
+
num_beams=1,
|
89 |
+
do_sample=True,
|
90 |
+
prng_key=rng,
|
91 |
+
eos_token_id=50000,
|
92 |
+
pad_token_id=50000,
|
93 |
+
params=params,
|
94 |
+
)
|
95 |
+
|
96 |
+
def get_images(indices, params):
|
97 |
+
return vqgan.decode_code(indices, params=params)
|
98 |
+
|
99 |
+
def plot_images(images):
|
100 |
+
fig = plt.figure(figsize=(40, 20))
|
101 |
+
columns = 4
|
102 |
+
rows = 2
|
103 |
+
plt.subplots_adjust(hspace=0, wspace=0)
|
104 |
+
|
105 |
+
for i in range(1, columns*rows +1):
|
106 |
+
fig.add_subplot(rows, columns, i)
|
107 |
+
plt.imshow(images[i-1])
|
108 |
+
plt.gca().axes.get_yaxis().set_visible(False)
|
109 |
+
plt.show()
|
110 |
+
|
111 |
+
def stack_reconstructions(images):
|
112 |
+
w, h = images[0].size[0], images[0].size[1]
|
113 |
+
img = Image.new("RGB", (len(images)*w, h))
|
114 |
+
for i, img_ in enumerate(images):
|
115 |
+
img.paste(img_, (i*w,0))
|
116 |
+
return img
|
117 |
+
|
118 |
+
p_generate = jax.pmap(generate, "batch")
|
119 |
+
p_get_images = jax.pmap(get_images, "batch")
|
120 |
+
|
121 |
+
# ## CLIP Scoring
|
122 |
+
from transformers import CLIPProcessor, FlaxCLIPModel
|
123 |
+
|
124 |
+
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
125 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
126 |
+
|
127 |
+
def hallucinate(prompt, num_images=64):
|
128 |
+
prompt = [prompt] * jax.device_count()
|
129 |
+
inputs = tokenizer(prompt, return_tensors='jax', padding="max_length", truncation=True, max_length=128).data
|
130 |
+
inputs = shard(inputs)
|
131 |
+
|
132 |
+
all_images = []
|
133 |
+
for i in range(num_images // jax.device_count()):
|
134 |
+
key = random.randint(0, 1e7)
|
135 |
+
rng = jax.random.PRNGKey(key)
|
136 |
+
rngs = jax.random.split(rng, jax.local_device_count())
|
137 |
+
indices = p_generate(inputs, rngs, bart_params).sequences
|
138 |
+
indices = indices[:, :, 1:]
|
139 |
+
|
140 |
+
images = p_get_images(indices, vqgan_params)
|
141 |
+
images = np.squeeze(np.asarray(images), 1)
|
142 |
+
for image in images:
|
143 |
+
all_images.append(custom_to_pil(image))
|
144 |
+
return all_images
|
145 |
+
|
146 |
+
def clip_top_k(prompt, images, k=8):
|
147 |
+
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
148 |
+
outputs = clip(**inputs)
|
149 |
+
logits = outputs.logits_per_text
|
150 |
+
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
151 |
+
return [images[score] for score in scores]
|
152 |
+
|
153 |
+
from PIL import ImageDraw, ImageFont
|
154 |
+
|
155 |
+
def captioned_strip(images, caption):
|
156 |
+
w, h = images[0].size[0], images[0].size[1]
|
157 |
+
img = Image.new("RGB", (len(images)*w, h + 48))
|
158 |
+
for i, img_ in enumerate(images):
|
159 |
+
img.paste(img_, (i*w, 48))
|
160 |
+
draw = ImageDraw.Draw(img)
|
161 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40)
|
162 |
+
draw.text((20, 3), caption, (255,255,255), font=font)
|
163 |
+
return img
|
164 |
+
|
165 |
+
def log_to_wandb(prompts):
|
166 |
+
strips = []
|
167 |
+
for prompt in prompts:
|
168 |
+
print(f"Generating candidates for: {prompt}")
|
169 |
+
images = hallucinate(prompt, num_images=32)
|
170 |
+
selected = clip_top_k(prompt, images, k=8)
|
171 |
+
strip = captioned_strip(selected, prompt)
|
172 |
+
strips.append(wandb.Image(strip))
|
173 |
+
wandb.log({"images": strips})
|
174 |
+
|
175 |
+
## Artifact loop
|
176 |
+
|
177 |
+
import wandb
|
178 |
+
import os
|
179 |
+
os.environ["WANDB_SILENT"] = "true"
|
180 |
+
os.environ["WANDB_CONSOLE"] = "off"
|
181 |
+
|
182 |
+
id = wandb.util.generate_id()
|
183 |
+
print(f"Logging images to wandb run id: {id}")
|
184 |
+
|
185 |
+
run = wandb.init(id=id,
|
186 |
+
entity='wandb',
|
187 |
+
project="hf-flax-dalle-mini",
|
188 |
+
job_type="predictions",
|
189 |
+
resume="allow"
|
190 |
+
)
|
191 |
+
|
192 |
+
artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-3iwhu4w6:v0', type='bart_model')
|
193 |
+
producer_run = artifact.logged_by()
|
194 |
+
logged_artifacts = producer_run.logged_artifacts()
|
195 |
+
|
196 |
+
for artifact in logged_artifacts:
|
197 |
+
print(f"Generating predictions with version {artifact.version}")
|
198 |
+
artifact_dir = artifact.download()
|
199 |
+
|
200 |
+
# create our model
|
201 |
+
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
202 |
+
model.config.force_bos_token_to_be_generated = False
|
203 |
+
model.config.forced_bos_token_id = None
|
204 |
+
model.config.forced_eos_token_id = None
|
205 |
+
|
206 |
+
bart_params = replicate(model.params)
|
207 |
+
vqgan_params = replicate(vqgan.params)
|
208 |
+
|
209 |
+
prompts = prompts = [
|
210 |
+
"white snow covered mountain under blue sky during daytime",
|
211 |
+
"aerial view of beach during daytime",
|
212 |
+
"aerial view of beach at night",
|
213 |
+
"an armchair in the shape of an avocado",
|
214 |
+
"young woman riding her bike trough a forest",
|
215 |
+
"rice fields by the mediterranean coast",
|
216 |
+
"white houses on the hill of a greek coastline",
|
217 |
+
"illustration of a shark with a baby shark",
|
218 |
+
]
|
219 |
+
|
220 |
+
log_to_wandb(prompts)
|
demo/wandb-examples.py
CHANGED
@@ -83,7 +83,7 @@ run = wandb.init(id=id,
|
|
83 |
job_type="predictions",
|
84 |
resume="allow"
|
85 |
)
|
86 |
-
artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-
|
87 |
artifact_dir = artifact.download()
|
88 |
|
89 |
# create our model
|
|
|
83 |
job_type="predictions",
|
84 |
resume="allow"
|
85 |
)
|
86 |
+
artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-4oh3u7ca:latest', type='bart_model')
|
87 |
artifact_dir = artifact.download()
|
88 |
|
89 |
# create our model
|