Spaces:
Running
Running
feat: cleanup encode_dataset
Browse files
tools/dataset/{make_dataset.ipynb → encode_dataset.ipynb}
RENAMED
@@ -5,7 +5,7 @@
|
|
5 |
"id": "d0b72877",
|
6 |
"metadata": {},
|
7 |
"source": [
|
8 |
-
"#
|
9 |
]
|
10 |
},
|
11 |
{
|
@@ -15,7 +15,11 @@
|
|
15 |
"source": [
|
16 |
"This notebook shows how to pre-encode images to token sequences using JAX, VQGAN and a dataset in the [`webdataset` format](https://webdataset.github.io/webdataset/).\n",
|
17 |
"\n",
|
18 |
-
"
|
|
|
|
|
|
|
|
|
19 |
]
|
20 |
},
|
21 |
{
|
@@ -25,19 +29,15 @@
|
|
25 |
"metadata": {},
|
26 |
"outputs": [],
|
27 |
"source": [
|
28 |
-
"
|
29 |
-
"from tqdm import tqdm\n",
|
30 |
"\n",
|
31 |
-
"import torch\n",
|
32 |
"import torchvision.transforms as T\n",
|
33 |
-
"import torchvision.transforms.functional as TF\n",
|
34 |
-
"from torchvision.transforms import InterpolationMode\n",
|
35 |
-
"import math\n",
|
36 |
"\n",
|
37 |
"import webdataset as wds\n",
|
38 |
"\n",
|
39 |
"import jax\n",
|
40 |
-
"
|
|
|
41 |
]
|
42 |
},
|
43 |
{
|
@@ -45,184 +45,110 @@
|
|
45 |
"id": "c7c4c1e6",
|
46 |
"metadata": {},
|
47 |
"source": [
|
48 |
-
"##
|
49 |
-
]
|
50 |
-
},
|
51 |
-
{
|
52 |
-
"cell_type": "markdown",
|
53 |
-
"id": "9822850f",
|
54 |
-
"metadata": {},
|
55 |
-
"source": [
|
56 |
-
"The following is the list of shards we'll process. We hardcode the length of data so that we can see nice progress bars using `tqdm`."
|
57 |
]
|
58 |
},
|
59 |
{
|
60 |
"cell_type": "code",
|
61 |
-
"execution_count":
|
62 |
"id": "1265dbfe",
|
63 |
"metadata": {},
|
64 |
"outputs": [],
|
65 |
"source": [
|
66 |
-
"shards =
|
67 |
-
"
|
68 |
-
]
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"cell_type": "markdown",
|
72 |
-
"id": "7e38fa14",
|
73 |
-
"metadata": {},
|
74 |
-
"source": [
|
75 |
-
"If we are extra cautious or our server is unreliable, we can enable retries by providing a custom `curl` retrieval command:"
|
76 |
-
]
|
77 |
-
},
|
78 |
-
{
|
79 |
-
"cell_type": "code",
|
80 |
-
"execution_count": null,
|
81 |
-
"id": "4c8c5960",
|
82 |
-
"metadata": {},
|
83 |
-
"outputs": [],
|
84 |
-
"source": [
|
85 |
-
"# Enable curl retries to try to work around temporary network / server errors.\n",
|
86 |
-
"# This shouldn't be necessary when using reliable servers.\n",
|
87 |
-
"# shards = f'pipe:curl -s --retry 5 --retry-delay 5 -L {shards} || true'"
|
88 |
-
]
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"cell_type": "code",
|
92 |
-
"execution_count": null,
|
93 |
-
"id": "13c6631b",
|
94 |
-
"metadata": {},
|
95 |
-
"outputs": [],
|
96 |
-
"source": [
|
97 |
-
"from pathlib import Path\n",
|
98 |
"\n",
|
99 |
-
"
|
100 |
-
"
|
|
|
|
|
101 |
"\n",
|
102 |
-
"
|
103 |
-
"
|
|
|
|
|
|
|
104 |
]
|
105 |
},
|
106 |
{
|
107 |
"cell_type": "code",
|
108 |
-
"execution_count":
|
109 |
-
"id": "
|
110 |
-
"metadata": {},
|
111 |
-
"outputs": [
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
]
|
116 |
},
|
117 |
{
|
118 |
"cell_type": "markdown",
|
119 |
-
"id": "
|
120 |
"metadata": {},
|
121 |
"source": [
|
122 |
-
"
|
123 |
-
]
|
124 |
-
},
|
125 |
-
{
|
126 |
-
"cell_type": "code",
|
127 |
-
"execution_count": null,
|
128 |
-
"id": "669b35df",
|
129 |
-
"metadata": {},
|
130 |
-
"outputs": [],
|
131 |
-
"source": [
|
132 |
-
"def center_crop(image, max_size=256):\n",
|
133 |
-
" # Note: we allow upscaling too. We should exclude small images. \n",
|
134 |
-
" image = TF.resize(image, max_size, interpolation=InterpolationMode.LANCZOS)\n",
|
135 |
-
" image = TF.center_crop(image, output_size=2 * [max_size])\n",
|
136 |
-
" return image\n",
|
137 |
-
"\n",
|
138 |
-
"preprocess_image = T.Compose([\n",
|
139 |
-
" center_crop,\n",
|
140 |
-
" T.ToTensor(),\n",
|
141 |
-
" lambda t: t.permute(1, 2, 0) # Reorder, we need dimensions last\n",
|
142 |
-
"])"
|
143 |
]
|
144 |
},
|
145 |
{
|
146 |
"cell_type": "markdown",
|
147 |
-
"id": "
|
148 |
"metadata": {},
|
149 |
"source": [
|
150 |
-
"
|
151 |
-
"\n",
|
152 |
-
"Note that we receive the contents of the `json` structure, which will be replaced by the string we return.\n",
|
153 |
-
"If we want to keep other fields inside `json`, we can add `caption` as a new field."
|
154 |
]
|
155 |
},
|
156 |
{
|
157 |
"cell_type": "code",
|
158 |
"execution_count": null,
|
159 |
-
"id": "
|
160 |
"metadata": {},
|
161 |
"outputs": [],
|
162 |
"source": [
|
163 |
-
"
|
164 |
-
"
|
165 |
-
"
|
166 |
-
"
|
167 |
-
"
|
|
|
168 |
]
|
169 |
},
|
170 |
{
|
171 |
"cell_type": "markdown",
|
172 |
-
"id": "
|
173 |
"metadata": {},
|
174 |
"source": [
|
175 |
-
"
|
176 |
-
"
|
177 |
-
"
|
178 |
-
"
|
179 |
-
"We can also create our custom exception handler as demonstrated here:"
|
180 |
]
|
181 |
},
|
182 |
{
|
183 |
-
"cell_type": "
|
184 |
-
"
|
185 |
-
"id": "369d9719",
|
186 |
-
"metadata": {},
|
187 |
-
"outputs": [],
|
188 |
-
"source": [
|
189 |
-
"# UNUSED - Log exceptions to a file\n",
|
190 |
-
"def ignore_and_log(exn):\n",
|
191 |
-
" with open('errors.txt', 'a') as f:\n",
|
192 |
-
" f.write(f'{repr(exn)}\\n')\n",
|
193 |
-
" return True"
|
194 |
-
]
|
195 |
-
},
|
196 |
-
{
|
197 |
-
"cell_type": "code",
|
198 |
-
"execution_count": null,
|
199 |
-
"id": "27de1414",
|
200 |
-
"metadata": {},
|
201 |
-
"outputs": [],
|
202 |
-
"source": [
|
203 |
-
"# Or simply use `wds.ignore_and_continue`\n",
|
204 |
-
"exception_handler = wds.warn_and_continue"
|
205 |
-
]
|
206 |
-
},
|
207 |
-
{
|
208 |
-
"cell_type": "code",
|
209 |
-
"execution_count": null,
|
210 |
-
"id": "5149b6d5",
|
211 |
"metadata": {},
|
212 |
-
"outputs": [],
|
213 |
"source": [
|
214 |
-
"
|
215 |
-
" length=batches, # Hint so `len` is implemented\n",
|
216 |
-
" shardshuffle=False, # Keep same order for encoded files for easier bookkeeping. Set to `True` for training.\n",
|
217 |
-
" handler=exception_handler, # Ignore read errors instead of failing.\n",
|
218 |
-
")\n",
|
219 |
-
"\n",
|
220 |
-
"dataset = (dataset \n",
|
221 |
-
" .decode('pil') # decode image with PIL\n",
|
222 |
-
"# .map_dict(jpg=preprocess_image, json=create_caption, handler=exception_handler) # Process fields with functions defined above\n",
|
223 |
-
" .map_dict(jpg=preprocess_image, json=create_caption) # Process fields with functions defined above\n",
|
224 |
-
" .to_tuple('__key__', 'jpg', 'json') # filter to keep only key (for reference), image, caption.\n",
|
225 |
-
" .batched(bs)) # better to batch in the dataset (but we could also do it in the dataloader) - this arg does not affect speed and we could remove it"
|
226 |
]
|
227 |
},
|
228 |
{
|
@@ -235,7 +161,7 @@
|
|
235 |
"outputs": [],
|
236 |
"source": [
|
237 |
"%%time\n",
|
238 |
-
"
|
239 |
]
|
240 |
},
|
241 |
{
|
@@ -251,54 +177,50 @@
|
|
251 |
{
|
252 |
"cell_type": "code",
|
253 |
"execution_count": null,
|
254 |
-
"id": "
|
255 |
"metadata": {},
|
256 |
"outputs": [],
|
257 |
"source": [
|
258 |
-
"
|
259 |
-
]
|
260 |
-
},
|
261 |
-
{
|
262 |
-
"cell_type": "markdown",
|
263 |
-
"id": "44d50a51",
|
264 |
-
"metadata": {},
|
265 |
-
"source": [
|
266 |
-
"### Torch DataLoader"
|
267 |
]
|
268 |
},
|
269 |
{
|
270 |
"cell_type": "code",
|
271 |
"execution_count": null,
|
272 |
-
"id": "
|
273 |
"metadata": {},
|
274 |
"outputs": [],
|
275 |
"source": [
|
276 |
-
"
|
277 |
]
|
278 |
},
|
279 |
{
|
280 |
"cell_type": "markdown",
|
281 |
-
"id": "
|
282 |
"metadata": {},
|
283 |
"source": [
|
284 |
-
"
|
285 |
]
|
286 |
},
|
287 |
{
|
288 |
"cell_type": "code",
|
289 |
"execution_count": null,
|
290 |
-
"id": "
|
291 |
"metadata": {},
|
292 |
"outputs": [],
|
293 |
"source": [
|
294 |
-
"
|
|
|
|
|
295 |
]
|
296 |
},
|
297 |
{
|
298 |
"cell_type": "markdown",
|
299 |
-
"id": "
|
300 |
"metadata": {},
|
301 |
"source": [
|
|
|
|
|
302 |
"We'll use a VQGAN trained with Taming Transformers and converted to a JAX model."
|
303 |
]
|
304 |
},
|
@@ -311,7 +233,11 @@
|
|
311 |
},
|
312 |
"outputs": [],
|
313 |
"source": [
|
314 |
-
"
|
|
|
|
|
|
|
|
|
315 |
]
|
316 |
},
|
317 |
{
|
@@ -327,18 +253,7 @@
|
|
327 |
"id": "20357f74",
|
328 |
"metadata": {},
|
329 |
"source": [
|
330 |
-
"Encoding is really simple using `shard` to automatically distribute
|
331 |
-
]
|
332 |
-
},
|
333 |
-
{
|
334 |
-
"cell_type": "code",
|
335 |
-
"execution_count": null,
|
336 |
-
"id": "6686b004",
|
337 |
-
"metadata": {},
|
338 |
-
"outputs": [],
|
339 |
-
"source": [
|
340 |
-
"from flax.training.common_utils import shard\n",
|
341 |
-
"from functools import partial"
|
342 |
]
|
343 |
},
|
344 |
{
|
@@ -348,21 +263,17 @@
|
|
348 |
"metadata": {},
|
349 |
"outputs": [],
|
350 |
"source": [
|
|
|
|
|
|
|
|
|
351 |
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
352 |
-
"def
|
353 |
" # Not sure if we should `replicate` params, does not seem to have any effect\n",
|
354 |
-
" _, indices =
|
355 |
" return indices"
|
356 |
]
|
357 |
},
|
358 |
-
{
|
359 |
-
"cell_type": "markdown",
|
360 |
-
"id": "14375a41",
|
361 |
-
"metadata": {},
|
362 |
-
"source": [
|
363 |
-
"### Encoding loop"
|
364 |
-
]
|
365 |
-
},
|
366 |
{
|
367 |
"cell_type": "code",
|
368 |
"execution_count": null,
|
@@ -370,49 +281,48 @@
|
|
370 |
"metadata": {},
|
371 |
"outputs": [],
|
372 |
"source": [
|
373 |
-
"import os\n",
|
374 |
"import pandas as pd\n",
|
375 |
"\n",
|
376 |
-
"def encode_captioned_dataset(dataloader, output_dir, save_every=14):\n",
|
377 |
-
" output_dir.mkdir(parents=True, exist_ok=True)\n",
|
378 |
"\n",
|
379 |
-
"
|
380 |
-
"
|
381 |
-
"
|
382 |
-
"
|
383 |
-
"
|
384 |
-
" for
|
385 |
-
"
|
386 |
-
"
|
387 |
-
"
|
388 |
-
"
|
389 |
-
"
|
390 |
-
"\n",
|
391 |
-
"
|
392 |
-
"
|
|
|
|
|
|
|
|
|
393 |
" encoded = encoded.reshape(-1, encoded.shape[-1])\n",
|
|
|
|
|
394 |
"\n",
|
395 |
-
"
|
396 |
-
"
|
397 |
-
"
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
"
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
"metadata": {},
|
413 |
-
"outputs": [],
|
414 |
-
"source": [
|
415 |
-
"save_every = 318"
|
416 |
]
|
417 |
},
|
418 |
{
|
@@ -422,7 +332,7 @@
|
|
422 |
"metadata": {},
|
423 |
"outputs": [],
|
424 |
"source": [
|
425 |
-
"
|
426 |
]
|
427 |
},
|
428 |
{
|
@@ -453,7 +363,7 @@
|
|
453 |
"name": "python",
|
454 |
"nbconvert_exporter": "python",
|
455 |
"pygments_lexer": "ipython3",
|
456 |
-
"version": "3.
|
457 |
}
|
458 |
},
|
459 |
"nbformat": 4,
|
|
|
5 |
"id": "d0b72877",
|
6 |
"metadata": {},
|
7 |
"source": [
|
8 |
+
"# Pre-encoding a dataset for DALLE·mini"
|
9 |
]
|
10 |
},
|
11 |
{
|
|
|
15 |
"source": [
|
16 |
"This notebook shows how to pre-encode images to token sequences using JAX, VQGAN and a dataset in the [`webdataset` format](https://webdataset.github.io/webdataset/).\n",
|
17 |
"\n",
|
18 |
+
"Adapt it to your own dataset and image encoder.\n",
|
19 |
+
"\n",
|
20 |
+
"At the end you should have a dataset of pairs:\n",
|
21 |
+
"* a caption defined as a string\n",
|
22 |
+
"* an encoded image defined as a list of int."
|
23 |
]
|
24 |
},
|
25 |
{
|
|
|
29 |
"metadata": {},
|
30 |
"outputs": [],
|
31 |
"source": [
|
32 |
+
"from tqdm.notebook import tqdm\n",
|
|
|
33 |
"\n",
|
|
|
34 |
"import torchvision.transforms as T\n",
|
|
|
|
|
|
|
35 |
"\n",
|
36 |
"import webdataset as wds\n",
|
37 |
"\n",
|
38 |
"import jax\n",
|
39 |
+
"import braceexpand\n",
|
40 |
+
"from pathlib import Path"
|
41 |
]
|
42 |
},
|
43 |
{
|
|
|
45 |
"id": "c7c4c1e6",
|
46 |
"metadata": {},
|
47 |
"source": [
|
48 |
+
"## Configuration Parameters"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
]
|
50 |
},
|
51 |
{
|
52 |
"cell_type": "code",
|
53 |
+
"execution_count": 3,
|
54 |
"id": "1265dbfe",
|
55 |
"metadata": {},
|
56 |
"outputs": [],
|
57 |
"source": [
|
58 |
+
"shards = \"my_images/shard-{0000..0008}.tar\" # defined using braceexpand format as used by webdataset\n",
|
59 |
+
"encoded_output = Path(\"encoded_data\") # where we will save our encoded data\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
"\n",
|
61 |
+
"VQGAN_REPO, VQGAN_COMMIT_ID = (\n",
|
62 |
+
" \"dalle-mini/vqgan_imagenet_f16_16384\",\n",
|
63 |
+
" \"85eb5d3b51a1c62a0cc8f4ccdee9882c0d0bd384\",\n",
|
64 |
+
")\n",
|
65 |
"\n",
|
66 |
+
"# good defaults for a TPU v3-8\n",
|
67 |
+
"batch_size = 128 # Per device\n",
|
68 |
+
"num_workers = 8 # For parallel processing\n",
|
69 |
+
"total_bs = batch_size * jax.device_count() # You can use a smaller size while testing\n",
|
70 |
+
"save_frequency = 128 # Number of batches to create a new file (180MB for f16 and 720MB for f8 per file)"
|
71 |
]
|
72 |
},
|
73 |
{
|
74 |
"cell_type": "code",
|
75 |
+
"execution_count": 5,
|
76 |
+
"id": "cd956ec6-7d98-4d4d-a454-f80fe857eadd",
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [
|
79 |
+
{
|
80 |
+
"data": {
|
81 |
+
"text/plain": [
|
82 |
+
"['XXX/shard-0000.tar',\n",
|
83 |
+
" 'XXX/shard-0001.tar',\n",
|
84 |
+
" 'XXX/shard-0002.tar',\n",
|
85 |
+
" 'XXX/shard-0003.tar',\n",
|
86 |
+
" 'XXX/shard-0004.tar',\n",
|
87 |
+
" 'XXX/shard-0005.tar',\n",
|
88 |
+
" 'XXX/shard-0006.tar',\n",
|
89 |
+
" 'XXX/shard-0007.tar',\n",
|
90 |
+
" 'XXX/shard-0008.tar']"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
"execution_count": 5,
|
94 |
+
"metadata": {},
|
95 |
+
"output_type": "execute_result"
|
96 |
+
}
|
97 |
+
],
|
98 |
+
"source": [
|
99 |
+
"shards = list(\n",
|
100 |
+
" braceexpand.braceexpand(shards)\n",
|
101 |
+
") # better display for tqdm with known length"
|
102 |
]
|
103 |
},
|
104 |
{
|
105 |
"cell_type": "markdown",
|
106 |
+
"id": "75dba8e2",
|
107 |
"metadata": {},
|
108 |
"source": [
|
109 |
+
"## Load data"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
]
|
111 |
},
|
112 |
{
|
113 |
"cell_type": "markdown",
|
114 |
+
"id": "a1e8fb95",
|
115 |
"metadata": {},
|
116 |
"source": [
|
117 |
+
"We load data using `webdataset`."
|
|
|
|
|
|
|
118 |
]
|
119 |
},
|
120 |
{
|
121 |
"cell_type": "code",
|
122 |
"execution_count": null,
|
123 |
+
"id": "9ef5de9e",
|
124 |
"metadata": {},
|
125 |
"outputs": [],
|
126 |
"source": [
|
127 |
+
"ds = (\n",
|
128 |
+
" wds.WebDataset(shards, handler=wds.warn_and_continue)\n",
|
129 |
+
" .decode(\"rgb\", handler=wds.warn_and_continue)\n",
|
130 |
+
" .to_tuple(\"jpg\", \"txt\") # assumes image is in `jpg` and caption in `txt`\n",
|
131 |
+
" .batched(total_bs) # load in batch per worker (faster)\n",
|
132 |
+
")"
|
133 |
]
|
134 |
},
|
135 |
{
|
136 |
"cell_type": "markdown",
|
137 |
+
"id": "90981824",
|
138 |
"metadata": {},
|
139 |
"source": [
|
140 |
+
"Note:\n",
|
141 |
+
"* you can also shuffle shards and items using `shardshuffle` and `shuffle` if necessary.\n",
|
142 |
+
"* you may need to resize images in your pipeline (with `map_dict` for example), we assume they are already set to 256x256.\n",
|
143 |
+
"* you can also filter out some items using `select`."
|
|
|
144 |
]
|
145 |
},
|
146 |
{
|
147 |
+
"cell_type": "markdown",
|
148 |
+
"id": "129c377d",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
"metadata": {},
|
|
|
150 |
"source": [
|
151 |
+
"We can now inspect our data."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
]
|
153 |
},
|
154 |
{
|
|
|
161 |
"outputs": [],
|
162 |
"source": [
|
163 |
"%%time\n",
|
164 |
+
"images, captions = next(iter(ds))"
|
165 |
]
|
166 |
},
|
167 |
{
|
|
|
177 |
{
|
178 |
"cell_type": "code",
|
179 |
"execution_count": null,
|
180 |
+
"id": "5acfc4d8",
|
181 |
"metadata": {},
|
182 |
"outputs": [],
|
183 |
"source": [
|
184 |
+
"captions[:10]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
]
|
186 |
},
|
187 |
{
|
188 |
"cell_type": "code",
|
189 |
"execution_count": null,
|
190 |
+
"id": "c24693c0",
|
191 |
"metadata": {},
|
192 |
"outputs": [],
|
193 |
"source": [
|
194 |
+
"T.ToPILImage()(images[0].permute(2, 0, 1))"
|
195 |
]
|
196 |
},
|
197 |
{
|
198 |
"cell_type": "markdown",
|
199 |
+
"id": "3059ffb1",
|
200 |
"metadata": {},
|
201 |
"source": [
|
202 |
+
"Finally we create our dataloader."
|
203 |
]
|
204 |
},
|
205 |
{
|
206 |
"cell_type": "code",
|
207 |
"execution_count": null,
|
208 |
+
"id": "c227c551",
|
209 |
"metadata": {},
|
210 |
"outputs": [],
|
211 |
"source": [
|
212 |
+
"dl = (\n",
|
213 |
+
" wds.WebLoader(ds, batch_size=None, num_workers=8).unbatched().batched(total_bs)\n",
|
214 |
+
") # avoid partial batch at the end of each worker"
|
215 |
]
|
216 |
},
|
217 |
{
|
218 |
"cell_type": "markdown",
|
219 |
+
"id": "a354472b",
|
220 |
"metadata": {},
|
221 |
"source": [
|
222 |
+
"## Image encoder\n",
|
223 |
+
"\n",
|
224 |
"We'll use a VQGAN trained with Taming Transformers and converted to a JAX model."
|
225 |
]
|
226 |
},
|
|
|
233 |
},
|
234 |
"outputs": [],
|
235 |
"source": [
|
236 |
+
"from vqgan_jax.modeling_flax_vqgan import VQModel\n",
|
237 |
+
"from flax.jax_utils import replicate\n",
|
238 |
+
"\n",
|
239 |
+
"vqgan = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")\n",
|
240 |
+
"vqgan_params = replicate(vqgan.params)"
|
241 |
]
|
242 |
},
|
243 |
{
|
|
|
253 |
"id": "20357f74",
|
254 |
"metadata": {},
|
255 |
"source": [
|
256 |
+
"Encoding is really simple using `shard` to automatically distribute batches across devices and `pmap`."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
]
|
258 |
},
|
259 |
{
|
|
|
263 |
"metadata": {},
|
264 |
"outputs": [],
|
265 |
"source": [
|
266 |
+
"from flax.training.common_utils import shard\n",
|
267 |
+
"from functools import partial\n",
|
268 |
+
"\n",
|
269 |
+
"\n",
|
270 |
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
271 |
+
"def p_encode(batch, params):\n",
|
272 |
" # Not sure if we should `replicate` params, does not seem to have any effect\n",
|
273 |
+
" _, indices = vqgan.encode(batch, params=params)\n",
|
274 |
" return indices"
|
275 |
]
|
276 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
{
|
278 |
"cell_type": "code",
|
279 |
"execution_count": null,
|
|
|
281 |
"metadata": {},
|
282 |
"outputs": [],
|
283 |
"source": [
|
|
|
284 |
"import pandas as pd\n",
|
285 |
"\n",
|
|
|
|
|
286 |
"\n",
|
287 |
+
"def encode_dataset(dataloader, output_dir, save_frequency):\n",
|
288 |
+
" output_dir.mkdir(parents=True, exist_ok=True)\n",
|
289 |
+
" all_captions = []\n",
|
290 |
+
" all_encoding = []\n",
|
291 |
+
" n_file = 1\n",
|
292 |
+
" for idx, (images, captions) in enumerate(tqdm(dataloader)):\n",
|
293 |
+
" images = images.numpy()\n",
|
294 |
+
" n = len(images) // 8 * 8\n",
|
295 |
+
" if n != len(images):\n",
|
296 |
+
" # get the max number of images we can (multiple of 8)\n",
|
297 |
+
" print(f\"Different sizes {n} vs {len(images)}\")\n",
|
298 |
+
" images = images[:n]\n",
|
299 |
+
" captions = captions[:n]\n",
|
300 |
+
" if not len(captions):\n",
|
301 |
+
" print(f\"No images/captions in batch...\")\n",
|
302 |
+
" continue\n",
|
303 |
+
" images = shard(images)\n",
|
304 |
+
" encoded = p_encode(images, vqgan_params)\n",
|
305 |
" encoded = encoded.reshape(-1, encoded.shape[-1])\n",
|
306 |
+
" all_captions.extend(captions)\n",
|
307 |
+
" all_encoding.extend(encoded.tolist())\n",
|
308 |
"\n",
|
309 |
+
" # save files\n",
|
310 |
+
" if (idx + 1) % save_frequency == 0:\n",
|
311 |
+
" print(f\"Saving file {n_file}\")\n",
|
312 |
+
" batch_df = pd.DataFrame.from_dict(\n",
|
313 |
+
" {\"caption\": all_captions, \"encoding\": all_encoding}\n",
|
314 |
+
" )\n",
|
315 |
+
" batch_df.to_parquet(f\"{output_dir}/{n_file:03d}.parquet\")\n",
|
316 |
+
" all_captions = []\n",
|
317 |
+
" all_encoding = []\n",
|
318 |
+
" n_file += 1\n",
|
319 |
+
"\n",
|
320 |
+
" if len(all_captions):\n",
|
321 |
+
" print(f\"Saving final file {n_file}\")\n",
|
322 |
+
" batch_df = pd.DataFrame.from_dict(\n",
|
323 |
+
" {\"caption\": all_captions, \"encoding\": all_encoding}\n",
|
324 |
+
" )\n",
|
325 |
+
" batch_df.to_parquet(f\"{output_dir}/{n_file:03d}.parquet\")"
|
|
|
|
|
|
|
|
|
326 |
]
|
327 |
},
|
328 |
{
|
|
|
332 |
"metadata": {},
|
333 |
"outputs": [],
|
334 |
"source": [
|
335 |
+
"encode_dataset(dl, output_dir=encoded_output, save_frequency=save_frequency)"
|
336 |
]
|
337 |
},
|
338 |
{
|
|
|
363 |
"name": "python",
|
364 |
"nbconvert_exporter": "python",
|
365 |
"pygments_lexer": "ipython3",
|
366 |
+
"version": "3.9.7"
|
367 |
}
|
368 |
},
|
369 |
"nbformat": 4,
|