Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team and the DalleBart team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" DalleBart model. """ | |
import math | |
from functools import partial | |
from typing import Optional, Tuple | |
import flax.linen as nn | |
import jax | |
import jax.numpy as jnp | |
from flax.core.frozen_dict import unfreeze | |
from flax.linen import make_causal_mask | |
from flax.traverse_util import flatten_dict | |
from jax.random import PRNGKey | |
from transformers.modeling_flax_outputs import ( | |
FlaxCausalLMOutputWithCrossAttentions, | |
FlaxSeq2SeqLMOutput, | |
) | |
from transformers.modeling_flax_utils import ACT2FN | |
from transformers.models.bart.modeling_flax_bart import ( | |
FlaxBartAttention, | |
FlaxBartDecoder, | |
FlaxBartDecoderLayer, | |
FlaxBartDecoderLayerCollection, | |
FlaxBartEncoder, | |
FlaxBartEncoderLayer, | |
FlaxBartEncoderLayerCollection, | |
FlaxBartForConditionalGeneration, | |
FlaxBartForConditionalGenerationModule, | |
FlaxBartModule, | |
FlaxBartPreTrainedModel, | |
) | |
from transformers.utils import logging | |
from .configuration import DalleBartConfig | |
logger = logging.get_logger(__name__) | |
class FlaxBartAttention(FlaxBartAttention): | |
""" | |
Edits: | |
- causal mask is used only in decoder and considers image_length + 1 (for BOS) | |
""" | |
def setup(self) -> None: | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
dense = partial( | |
nn.Dense, | |
self.embed_dim, | |
use_bias=self.bias, | |
dtype=self.dtype, | |
kernel_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() | |
self.out_proj = dense() | |
self.dropout_layer = nn.Dropout(rate=self.dropout) | |
if self.causal: | |
# used only in decoder | |
self.causal_mask = make_causal_mask( | |
jnp.ones((1, self.config.image_length + 1), dtype="bool"), dtype="bool" | |
) | |
class FlaxBartEncoderLayer(FlaxBartEncoderLayer): | |
""" | |
Edits: | |
- no bias | |
- use custom FlaxBartAttention | |
""" | |
def setup(self) -> None: | |
self.embed_dim = self.config.d_model | |
self.self_attn = FlaxBartAttention( | |
config=self.config, | |
embed_dim=self.embed_dim, | |
num_heads=self.config.encoder_attention_heads, | |
dropout=self.config.attention_dropout, | |
bias=False, | |
dtype=self.dtype, | |
) | |
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) | |
self.dropout_layer = nn.Dropout(rate=self.config.dropout) | |
self.activation_fn = ACT2FN[self.config.activation_function] | |
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) | |
self.fc1 = nn.Dense( | |
self.config.encoder_ffn_dim, | |
dtype=self.dtype, | |
use_bias=False, | |
kernel_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
self.fc2 = nn.Dense( | |
self.embed_dim, | |
dtype=self.dtype, | |
use_bias=False, | |
kernel_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) | |
class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection): | |
""" | |
Edits: | |
- use custom FlaxBartEncoderLayer | |
- allow Gradient Checkpointing (nn.remat) | |
""" | |
def setup(self): | |
layer_module = ( | |
nn.remat(FlaxBartEncoderLayer) | |
if self.config.gradient_checkpointing | |
else FlaxBartEncoderLayer | |
) | |
self.layers = [ | |
layer_module(self.config, name=str(i), dtype=self.dtype) | |
for i in range(self.config.encoder_layers) | |
] | |
self.layerdrop = self.config.encoder_layerdrop | |
class FlaxBartDecoderLayer(FlaxBartDecoderLayer): | |
""" | |
Edits: | |
- no bias | |
- uses custom FlaxBartAttention | |
""" | |
def setup(self) -> None: | |
self.embed_dim = self.config.d_model | |
self.self_attn = FlaxBartAttention( | |
config=self.config, | |
embed_dim=self.embed_dim, | |
num_heads=self.config.decoder_attention_heads, | |
dropout=self.config.attention_dropout, | |
causal=True, | |
bias=False, | |
dtype=self.dtype, | |
) | |
self.dropout_layer = nn.Dropout(rate=self.config.dropout) | |
self.activation_fn = ACT2FN[self.config.activation_function] | |
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) | |
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) | |
self.encoder_attn = FlaxBartAttention( | |
config=self.config, | |
embed_dim=self.embed_dim, | |
num_heads=self.config.decoder_attention_heads, | |
dropout=self.config.attention_dropout, | |
bias=False, | |
dtype=self.dtype, | |
) | |
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) | |
self.fc1 = nn.Dense( | |
self.config.encoder_ffn_dim, | |
dtype=self.dtype, | |
use_bias=False, | |
kernel_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
self.fc2 = nn.Dense( | |
self.embed_dim, | |
dtype=self.dtype, | |
use_bias=False, | |
kernel_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) | |
class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection): | |
""" | |
Edits: | |
- use custom FlaxBartDecoderLayer | |
- allow Gradient Checkpointing (nn.remat) | |
""" | |
def setup(self): | |
layer_module = ( | |
nn.remat(FlaxBartDecoderLayer) | |
if self.config.gradient_checkpointing | |
else FlaxBartDecoderLayer | |
) | |
self.layers = [ | |
layer_module(self.config, name=str(i), dtype=self.dtype) | |
for i in range(self.config.decoder_layers) | |
] | |
self.layerdrop = self.config.decoder_layerdrop | |
class FlaxBartEncoder(FlaxBartEncoder): | |
""" | |
Edits: | |
- offset set to 0 (no padding token) | |
- use max_text_length instead of max_position_embeddings | |
- use custom FlaxBartEncoderLayerCollection | |
- embed_tokens cannot be None (issue at compile time) | |
""" | |
def setup(self): | |
self.dropout_layer = nn.Dropout(rate=self.config.dropout) | |
embed_dim = self.config.d_model | |
self.padding_idx = self.config.pad_token_id | |
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 | |
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 | |
# and adjust num_embeddings appropriately. Other models don't have this hack | |
self.offset = 0 | |
self.embed_positions = nn.Embed( | |
self.config.max_text_length + self.offset, | |
embed_dim, | |
embedding_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype) | |
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) | |
class FlaxBartDecoder(FlaxBartDecoder): | |
""" | |
Edits: | |
- offset set to 0 (no padding token) | |
- use image_length + 1 (for BOS) instead of max_position_embeddings | |
- use custom FlaxBartDecoderLayerCollection | |
- embed_tokens cannot be None (issue at compile time) | |
""" | |
def setup(self): | |
self.dropout_layer = nn.Dropout(rate=self.config.dropout) | |
embed_dim = self.config.d_model | |
self.padding_idx = self.config.pad_token_id | |
self.embed_scale = ( | |
math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 | |
) | |
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 | |
# and adjust num_embeddings appropriately. Other models don't have this hack | |
self.offset = 0 | |
self.embed_positions = nn.Embed( | |
self.config.image_length + 1 + self.offset, # image length + 1 for BOS | |
embed_dim, | |
embedding_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype) | |
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) | |
class FlaxBartModule(FlaxBartModule): | |
""" | |
Edits | |
- use custom FlaxBartEncoder & FlaxBartDecoder | |
- use separate embeddings for Encoder & Decoder | |
""" | |
def setup(self): | |
encoder_embed_tokens = nn.Embed( | |
self.config.encoder_vocab_size, | |
self.config.d_model, | |
embedding_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
decoder_embed_tokens = nn.Embed( | |
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS | |
self.config.d_model, | |
embedding_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
self.encoder = FlaxBartEncoder( | |
self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens | |
) | |
self.decoder = FlaxBartDecoder( | |
self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens | |
) | |
class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel): | |
""" | |
Edits: | |
- added num_params property | |
- config_class replaced to DalleBartConfig | |
- __init__ accepts abstract_init which does uses parameter shape to initialize the model | |
""" | |
config_class = DalleBartConfig | |
def __init__( | |
self, | |
config: DalleBartConfig, | |
input_shape: Tuple[int] = (1, 1), | |
seed: int = 0, | |
dtype: jnp.dtype = jnp.float32, | |
abstract_init: bool = False, | |
**kwargs, | |
): | |
module = self.module_class(config=config, dtype=dtype, **kwargs) | |
# adapted from HuggingFace FlaxPreTrainedModel | |
if config is None: | |
raise ValueError("config cannot be None") | |
if module is None: | |
raise ValueError("module cannot be None") | |
# Those are private to be exposed as typed property on derived classes. | |
self._config = config | |
self._module = module | |
# Those are public as their type is generic to every derived classes. | |
self.key = PRNGKey(seed) | |
self.dtype = dtype | |
# randomly initialized parameters | |
if abstract_init: | |
# init the model weights only abstractly, eval_shape will return a pytree | |
# with the structure as weights but without any actual values, this will just contain | |
# the shape information. Weights need to be loaded later. | |
init_fn = partial(self.init_weights, input_shape=input_shape) | |
random_params = jax.eval_shape(init_fn, self.key) | |
else: | |
random_params = self.init_weights(self.key, input_shape) | |
# save required_params as set | |
self._required_params = set(flatten_dict(unfreeze(random_params)).keys()) | |
self.params = random_params | |
def num_params(self): | |
num_params = jax.tree_map( | |
lambda param: param.size, flatten_dict(unfreeze(self.params)) | |
).values() | |
return sum(list(num_params)) | |
class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): | |
""" | |
Edits: | |
- no bias | |
- lm_head set to image_vocab_size + 1 (for BOS) | |
- uses custom FlaxBartModule | |
""" | |
def setup(self): | |
self.model = FlaxBartModule(config=self.config, dtype=self.dtype) | |
self.lm_head = nn.Dense( | |
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS | |
use_bias=False, | |
dtype=self.dtype, | |
kernel_init=jax.nn.initializers.normal(self.config.init_std), | |
) | |
def __call__( | |
self, | |
input_ids, | |
attention_mask, | |
decoder_input_ids, | |
decoder_attention_mask, | |
position_ids, | |
decoder_position_ids, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
deterministic: bool = True, | |
): | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
position_ids=position_ids, | |
decoder_position_ids=decoder_position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
deterministic=deterministic, | |
) | |
hidden_states = outputs[0] | |
if self.config.tie_word_embeddings: | |
shared_embedding = self.model.variables["params"]["shared"]["embedding"] | |
lm_logits = self.lm_head.apply( | |
{"params": {"kernel": shared_embedding.T}}, hidden_states | |
) | |
else: | |
lm_logits = self.lm_head(hidden_states) | |
if not return_dict: | |
output = (lm_logits,) + outputs[1:] | |
return output | |
return FlaxSeq2SeqLMOutput( | |
logits=lm_logits, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
) | |
class DalleBart(FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration): | |
""" | |
Edits: | |
- renamed from FlaxBartForConditionalGeneration | |
- uses custom FlaxBartPreTrainedModel | |
- uses custom FlaxBartForConditionalGenerationModule | |
- no bias in decode method | |
""" | |
module_class = FlaxBartForConditionalGenerationModule | |
def decode( | |
self, | |
decoder_input_ids, | |
encoder_outputs, | |
encoder_attention_mask: Optional[jnp.ndarray] = None, | |
decoder_attention_mask: Optional[jnp.ndarray] = None, | |
decoder_position_ids: Optional[jnp.ndarray] = None, | |
past_key_values: dict = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
train: bool = False, | |
params: dict = None, | |
dropout_rng: PRNGKey = None, | |
): | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.return_dict | |
) | |
encoder_hidden_states = encoder_outputs[0] | |
if encoder_attention_mask is None: | |
batch_size, sequence_length = encoder_hidden_states.shape[:2] | |
encoder_attention_mask = jnp.ones((batch_size, sequence_length)) | |
batch_size, sequence_length = decoder_input_ids.shape | |
if decoder_attention_mask is None: | |
decoder_attention_mask = jnp.ones((batch_size, sequence_length)) | |
if decoder_position_ids is None: | |
if past_key_values is not None: | |
raise ValueError( | |
"Make sure to provide `decoder_position_ids` when passing `past_key_values`." | |
) | |
decoder_position_ids = jnp.broadcast_to( | |
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) | |
) | |
# Handle any PRNG if needed | |
rngs = {} | |
if dropout_rng is not None: | |
rngs["dropout"] = dropout_rng | |
inputs = {"params": params or self.params} | |
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be | |
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that | |
# it can be changed by FlaxBartAttention module | |
if past_key_values: | |
inputs["cache"] = past_key_values | |
mutable = ["cache"] | |
else: | |
mutable = False | |
def _decoder_forward( | |
module, | |
decoder_input_ids, | |
decoder_attention_mask, | |
decoder_position_ids, | |
**kwargs, | |
): | |
decoder_module = module._get_decoder_module() | |
outputs = decoder_module( | |
decoder_input_ids, | |
decoder_attention_mask, | |
decoder_position_ids, | |
**kwargs, | |
) | |
hidden_states = outputs[0] | |
if self.config.tie_word_embeddings: | |
shared_embedding = module.model.variables["params"]["shared"][ | |
"embedding" | |
] | |
lm_logits = module.lm_head.apply( | |
{"params": {"kernel": shared_embedding.T}}, hidden_states | |
) | |
else: | |
lm_logits = module.lm_head(hidden_states) | |
return lm_logits, outputs | |
outputs = self.module.apply( | |
inputs, | |
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), | |
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), | |
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
deterministic=not train, | |
rngs=rngs, | |
mutable=mutable, | |
method=_decoder_forward, | |
) | |
if past_key_values is None: | |
lm_logits, decoder_outputs = outputs | |
else: | |
(lm_logits, decoder_outputs), past = outputs | |
if return_dict: | |
outputs = FlaxCausalLMOutputWithCrossAttentions( | |
logits=lm_logits, | |
hidden_states=decoder_outputs.hidden_states, | |
attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
) | |
else: | |
outputs = (lm_logits,) + decoder_outputs[1:] | |
# add updated cache to model output | |
if past_key_values is not None and return_dict: | |
outputs["past_key_values"] = unfreeze(past["cache"]) | |
return outputs | |
elif past_key_values is not None and not return_dict: | |
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] | |
return outputs | |