Spaces:
Running
Running
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Team All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library models for seq2seq, text to image. | |
Script adapted from run_summarization_flax.py | |
""" | |
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. | |
import logging | |
import os | |
import sys | |
import time | |
from dataclasses import dataclass, field | |
from functools import partial | |
from pathlib import Path | |
from typing import Callable, Optional | |
import datasets | |
import nltk # Here to have a nice missing dependency error message early on | |
import numpy as np | |
from datasets import Dataset, load_dataset, load_metric | |
from tqdm import tqdm | |
import jax | |
import jax.numpy as jnp | |
import optax | |
import transformers | |
from filelock import FileLock | |
from flax import jax_utils, traverse_util | |
from flax.jax_utils import unreplicate | |
from flax.training import train_state | |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key | |
from transformers import ( | |
CONFIG_MAPPING, | |
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
AutoConfig, | |
AutoTokenizer, | |
FlaxAutoModelForSeq2SeqLM, | |
HfArgumentParser, | |
TrainingArguments, | |
is_tensorboard_available, | |
) | |
from transformers.file_utils import is_offline_mode | |
logger = logging.getLogger(__name__) | |
try: | |
nltk.data.find("tokenizers/punkt") | |
except (LookupError, OSError): | |
if is_offline_mode(): | |
raise LookupError( | |
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" | |
) | |
with FileLock(".lock") as lock: | |
nltk.download("punkt", quiet=True) | |
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys()) | |
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
""" | |
model_name_or_path: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "The model checkpoint for weights initialization." | |
"Don't set if you want to train a model from scratch." | |
}, | |
) | |
model_type: Optional[str] = field( | |
default=None, | |
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
) | |
dtype: Optional[str] = field( | |
default="float32", | |
metadata={ | |
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
dataset_name: Optional[str] = field( | |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
text_column: Optional[str] = field( | |
default=None, | |
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, | |
) | |
summary_column: Optional[str] = field( | |
default=None, | |
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."}, | |
) | |
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
) | |
test_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input predict data file to do prediction on (a text file)."}, | |
) | |
max_source_length: Optional[int] = field( | |
default=1024, | |
metadata={ | |
"help": "The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
}, | |
) | |
max_target_length: Optional[int] = field( | |
default=128, | |
metadata={ | |
"help": "The maximum total sequence length for target text after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
}, | |
) | |
val_max_target_length: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." | |
"This argument is also used to override the `max_length` param of `model.generate`, which is used " | |
"during evaluation." | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
}, | |
) | |
max_predict_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
"value if set." | |
}, | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
source_prefix: Optional[str] = field( | |
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} | |
) | |
predict_with_generate: bool = field( | |
default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} | |
) | |
num_beams: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`, " | |
"which is used during evaluation." | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
def __post_init__(self): | |
if self.dataset_name is None and self.train_file is None and self.validation_file is None: | |
raise ValueError("Need either a dataset name or a training/validation file.") | |
else: | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
if self.val_max_target_length is None: | |
self.val_max_target_length = self.max_target_length | |
summarization_name_mapping = { | |
"amazon_reviews_multi": ("review_body", "review_title"), | |
"big_patent": ("description", "abstract"), | |
"cnn_dailymail": ("article", "highlights"), | |
"orange_sum": ("text", "summary"), | |
"pn_summary": ("article", "summary"), | |
"psc": ("extract_text", "summary_text"), | |
"samsum": ("dialogue", "summary"), | |
"thaisum": ("body", "summary"), | |
"xglue": ("news_body", "news_title"), | |
"xsum": ("document", "summary"), | |
"wiki_summary": ("article", "highlights"), | |
} | |
class TrainState(train_state.TrainState): | |
dropout_rng: jnp.ndarray | |
def replicate(self): | |
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) | |
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False): | |
""" | |
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. | |
Shuffle batches if `shuffle` is `True`. | |
""" | |
steps_per_epoch = len(dataset) // batch_size | |
if shuffle: | |
batch_idx = jax.random.permutation(rng, len(dataset)) | |
else: | |
batch_idx = jnp.arange(len(dataset)) | |
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch. | |
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) | |
for idx in batch_idx: | |
batch = dataset[idx] | |
batch = {k: jnp.array(v) for k, v in batch.items()} | |
batch = shard(batch) | |
yield batch | |
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step): | |
summary_writer.scalar("train_time", train_time, step) | |
train_metrics = get_metrics(train_metrics) | |
for key, vals in train_metrics.items(): | |
tag = f"train_{key}" | |
for i, val in enumerate(vals): | |
summary_writer.scalar(tag, val, step - len(vals) + i + 1) | |
for metric_name, value in eval_metrics.items(): | |
summary_writer.scalar(f"eval_{metric_name}", value, step) | |
def create_learning_rate_fn( | |
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float | |
) -> Callable[[int], jnp.array]: | |
"""Returns a linear warmup, linear_decay learning rate function.""" | |
steps_per_epoch = train_ds_size // train_batch_size | |
num_train_steps = steps_per_epoch * num_train_epochs | |
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) | |
decay_fn = optax.linear_schedule( | |
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps | |
) | |
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) | |
return schedule_fn | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
if ( | |
os.path.exists(training_args.output_dir) | |
and os.listdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty." | |
"Use --overwrite_output_dir to overcome." | |
) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
# Setup logging, we only want one process per machine to log things on the screen. | |
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
if jax.process_index() == 0: | |
datasets.utils.logging.set_verbosity_warning() | |
transformers.utils.logging.set_verbosity_info() | |
else: | |
datasets.utils.logging.set_verbosity_error() | |
transformers.utils.logging.set_verbosity_error() | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) | |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# | |
# For CSV/JSON files this script will use the first column for the full texts and the second column for the | |
# summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments). | |
# | |
if data_args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
dataset = load_dataset( | |
data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False | |
) | |
else: | |
data_files = {} | |
if data_args.train_file is not None: | |
data_files["train"] = data_args.train_file | |
extension = data_args.train_file.split(".")[-1] | |
if data_args.validation_file is not None: | |
data_files["validation"] = data_args.validation_file | |
extension = data_args.validation_file.split(".")[-1] | |
if data_args.test_file is not None: | |
data_files["test"] = data_args.test_file | |
extension = data_args.test_file.split(".")[-1] | |
dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# Load pretrained model and tokenizer | |
if model_args.config_name: | |
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) | |
elif model_args.model_name_or_path: | |
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) | |
else: | |
config = CONFIG_MAPPING[model_args.model_type]() | |
logger.warning("You are instantiating a new config instance from scratch.") | |
if model_args.tokenizer_name: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer | |
) | |
elif model_args.model_name_or_path: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer | |
) | |
else: | |
raise ValueError( | |
"You are instantiating a new tokenizer from scratch. This is not supported by this script." | |
"You can do it from another script, save it, and load it from here, using --tokenizer_name." | |
) | |
if model_args.model_name_or_path: | |
model = FlaxAutoModelForSeq2SeqLM.from_pretrained( | |
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) | |
) | |
else: | |
model = FlaxAutoModelForSeq2SeqLM.from_config( | |
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) | |
) | |
if model.config.decoder_start_token_id is None: | |
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") | |
prefix = data_args.source_prefix if data_args.source_prefix is not None else "" | |
# Preprocessing the datasets. | |
# We need to tokenize inputs and targets. | |
if training_args.do_train: | |
column_names = dataset["train"].column_names | |
elif training_args.do_eval: | |
column_names = dataset["validation"].column_names | |
elif training_args.do_predict: | |
column_names = dataset["test"].column_names | |
else: | |
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") | |
return | |
# Get the column names for input/target. | |
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None) | |
if data_args.text_column is None: | |
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0] | |
else: | |
text_column = data_args.text_column | |
if text_column not in column_names: | |
raise ValueError( | |
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
if data_args.summary_column is None: | |
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1] | |
else: | |
summary_column = data_args.summary_column | |
if summary_column not in column_names: | |
raise ValueError( | |
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
# Temporarily set max_target_length for training. | |
max_target_length = data_args.max_target_length | |
# In Flax, for seq2seq models we need to pass `decoder_input_ids` | |
# as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here | |
# for that dynamically import the `shift_tokens_right` function from the model file | |
model_module = __import__(model.__module__, fromlist=["shift_tokens_tight"]) | |
shift_tokens_right_fn = getattr(model_module, "shift_tokens_right") | |
# Setting padding="max_length" as we need fixed length inputs for jitted functions | |
def preprocess_function(examples): | |
inputs = examples[text_column] | |
targets = examples[summary_column] | |
inputs = [prefix + inp for inp in inputs] | |
model_inputs = tokenizer( | |
inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np" | |
) | |
# Setup the tokenizer for targets | |
with tokenizer.as_target_tokenizer(): | |
labels = tokenizer( | |
targets, max_length=max_target_length, padding="max_length", truncation=True, return_tensors="np" | |
) | |
model_inputs["labels"] = labels["input_ids"] | |
decoder_input_ids = shift_tokens_right_fn( | |
jnp.array(labels["input_ids"]), config.pad_token_id, config.decoder_start_token_id | |
) | |
model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids) | |
# We need decoder_attention_mask so we can ignore pad tokens from loss | |
model_inputs["decoder_attention_mask"] = labels["attention_mask"] | |
return model_inputs | |
if training_args.do_train: | |
if "train" not in dataset: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = dataset["train"] | |
if data_args.max_train_samples is not None: | |
train_dataset = train_dataset.select(range(data_args.max_train_samples)) | |
train_dataset = train_dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on train dataset", | |
) | |
if training_args.do_eval: | |
max_target_length = data_args.val_max_target_length | |
if "validation" not in dataset: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_dataset = dataset["validation"] | |
if data_args.max_eval_samples is not None: | |
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) | |
eval_dataset = eval_dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on validation dataset", | |
) | |
if training_args.do_predict: | |
max_target_length = data_args.val_max_target_length | |
if "test" not in dataset: | |
raise ValueError("--do_predict requires a test dataset") | |
predict_dataset = dataset["test"] | |
if data_args.max_predict_samples is not None: | |
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) | |
predict_dataset = predict_dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on prediction dataset", | |
) | |
# Metric | |
metric = load_metric("rouge") | |
def postprocess_text(preds, labels): | |
preds = [pred.strip() for pred in preds] | |
labels = [label.strip() for label in labels] | |
# rougeLSum expects newline after each sentence | |
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] | |
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels] | |
return preds, labels | |
def compute_metrics(preds, labels): | |
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
# Some simple post-processing | |
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) | |
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) | |
# Extract a few results from ROUGE | |
result = {key: value.mid.fmeasure * 100 for key, value in result.items()} | |
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] | |
result["gen_len"] = np.mean(prediction_lens) | |
result = {k: round(v, 4) for k, v in result.items()} | |
return result | |
# Enable tensorboard only on the master node | |
has_tensorboard = is_tensorboard_available() | |
if has_tensorboard and jax.process_index() == 0: | |
try: | |
from flax.metrics.tensorboard import SummaryWriter | |
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) | |
except ImportError as ie: | |
has_tensorboard = False | |
logger.warning( | |
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" | |
) | |
else: | |
logger.warning( | |
"Unable to display metrics through TensorBoard because the package is not installed: " | |
"Please run pip install tensorboard to enable." | |
) | |
# Initialize our training | |
rng = jax.random.PRNGKey(training_args.seed) | |
rng, dropout_rng = jax.random.split(rng) | |
# Store some constant | |
num_epochs = int(training_args.num_train_epochs) | |
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() | |
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() | |
steps_per_epoch = len(train_dataset) // train_batch_size | |
total_train_steps = steps_per_epoch * num_epochs | |
# Create learning rate schedule | |
linear_decay_lr_schedule_fn = create_learning_rate_fn( | |
len(train_dataset), | |
train_batch_size, | |
training_args.num_train_epochs, | |
training_args.warmup_steps, | |
training_args.learning_rate, | |
) | |
# We use Optax's "masking" functionality to not apply weight decay | |
# to bias and LayerNorm scale parameters. decay_mask_fn returns a | |
# mask boolean with the same structure as the parameters. | |
# The mask is True for parameters that should be decayed. | |
# Note that this mask is specifically adapted for FlaxBart. | |
# For FlaxT5, one should correct the layer norm parameter naming | |
# accordingly - see `run_t5_mlm_flax.py` e.g. | |
def decay_mask_fn(params): | |
flat_params = traverse_util.flatten_dict(params) | |
layer_norm_params = [ | |
(name, "scale") for name in ["self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"] | |
] | |
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params} | |
return traverse_util.unflatten_dict(flat_mask) | |
# create adam optimizer | |
adamw = optax.adamw( | |
learning_rate=linear_decay_lr_schedule_fn, | |
b1=training_args.adam_beta1, | |
b2=training_args.adam_beta2, | |
eps=training_args.adam_epsilon, | |
weight_decay=training_args.weight_decay, | |
mask=decay_mask_fn, | |
) | |
# Setup train state | |
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng) | |
# label smoothed cross entropy | |
def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0): | |
""" | |
The label smoothing implementation is adapted from Flax's official example: | |
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 | |
""" | |
vocab_size = logits.shape[-1] | |
confidence = 1.0 - label_smoothing_factor | |
low_confidence = (1.0 - confidence) / (vocab_size - 1) | |
normalizing_constant = -( | |
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) | |
) | |
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) | |
loss = optax.softmax_cross_entropy(logits, soft_labels) | |
loss = loss - normalizing_constant | |
# ignore padded tokens from loss | |
loss = loss * padding_mask | |
loss = loss.sum() / padding_mask.sum() | |
return loss | |
# Define gradient update step fn | |
def train_step(state, batch, label_smoothing_factor=0.0): | |
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) | |
def compute_loss(params): | |
labels = batch.pop("labels") | |
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] | |
loss = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor) | |
return loss | |
grad_fn = jax.value_and_grad(compute_loss) | |
loss, grad = grad_fn(state.params) | |
grad = jax.lax.pmean(grad, "batch") | |
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) | |
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} | |
metrics = jax.lax.pmean(metrics, axis_name="batch") | |
return new_state, metrics | |
# Define eval fn | |
def eval_step(params, batch, label_smoothing_factor=0.0): | |
labels = batch.pop("labels") | |
logits = model(**batch, params=params, train=False)[0] | |
loss = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor) | |
# summarize metrics | |
metrics = {"loss": loss} | |
metrics = jax.lax.pmean(metrics, axis_name="batch") | |
return metrics | |
# Define generation function | |
max_length = ( | |
data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length | |
) | |
num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
def generate_step(params, batch): | |
model.params = params | |
output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs) | |
return output_ids.sequences | |
# Create parallel version of the train and eval step | |
p_train_step = jax.pmap( | |
partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,) | |
) | |
p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch") | |
p_generate_step = jax.pmap(generate_step, "batch") | |
# Replicate the train state on each device | |
state = state.replicate() | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {num_epochs}") | |
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") | |
logger.info(f" Total optimization steps = {total_train_steps}") | |
train_time = 0 | |
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) | |
for epoch in epochs: | |
# ======================== Training ================================ | |
train_start = time.time() | |
# Create sampling rng | |
rng, input_rng = jax.random.split(rng) | |
train_metrics = [] | |
# Generate an epoch by shuffling sampling indices from the train dataset | |
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True) | |
steps_per_epoch = len(train_dataset) // train_batch_size | |
# train | |
for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False): | |
batch = next(train_loader) | |
state, train_metric = p_train_step(state, batch) | |
train_metrics.append(train_metric) | |
train_time += time.time() - train_start | |
train_metric = unreplicate(train_metric) | |
epochs.write( | |
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})" | |
) | |
# ======================== Evaluating ============================== | |
eval_metrics = [] | |
eval_preds = [] | |
eval_labels = [] | |
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size) | |
eval_steps = len(eval_dataset) // eval_batch_size | |
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): | |
# Model forward | |
batch = next(eval_loader) | |
labels = batch["labels"] | |
metrics = p_eval_step(state.params, batch) | |
eval_metrics.append(metrics) | |
# generation | |
if data_args.predict_with_generate: | |
generated_ids = p_generate_step(state.params, batch) | |
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) | |
eval_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1]))) | |
# normalize eval metrics | |
eval_metrics = get_metrics(eval_metrics) | |
eval_metrics = jax.tree_map(jnp.mean, eval_metrics) | |
# compute ROUGE metrics | |
rouge_desc = "" | |
if data_args.predict_with_generate: | |
rouge_metrics = compute_metrics(eval_preds, eval_labels) | |
eval_metrics.update(rouge_metrics) | |
rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()]) | |
# Print metrics and update progress bar | |
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})" | |
epochs.write(desc) | |
epochs.desc = desc | |
# Save metrics | |
if has_tensorboard and jax.process_index() == 0: | |
cur_step = epoch * (len(train_dataset) // train_batch_size) | |
write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step) | |
# ======================== Prediction loop ============================== | |
if training_args.do_predict: | |
logger.info("*** Predict ***") | |
pred_metrics = [] | |
pred_generations = [] | |
pred_labels = [] | |
pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size) | |
pred_steps = len(predict_dataset) // eval_batch_size | |
for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False): | |
# Model forward | |
batch = next(pred_loader) | |
labels = batch["labels"] | |
metrics = p_eval_step(state.params, batch) | |
pred_metrics.append(metrics) | |
# generation | |
if data_args.predict_with_generate: | |
generated_ids = p_generate_step(state.params, batch) | |
pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) | |
pred_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1]))) | |
# normalize prediction metrics | |
pred_metrics = get_metrics(pred_metrics) | |
pred_metrics = jax.tree_map(jnp.mean, pred_metrics) | |
# compute ROUGE metrics | |
rouge_desc = "" | |
if data_args.predict_with_generate: | |
rouge_metrics = compute_metrics(pred_generations, pred_labels) | |
pred_metrics.update(rouge_metrics) | |
rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()]) | |
# Print metrics | |
desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})" | |
logger.info(desc) | |
# save checkpoint after each epoch and push checkpoint to the hub | |
if jax.process_index() == 0: | |
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) | |
model.save_pretrained( | |
training_args.output_dir, | |
params=params, | |
push_to_hub=training_args.push_to_hub, | |
commit_message=f"Saving weights and logs of epoch {epoch+1}", | |
) | |
if __name__ == "__main__": | |
main() | |