Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" BART model configuration """ | |
import warnings | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
BART_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", | |
# See all BART models at https://huggingface.co/models?filter=bart | |
} | |
class BartConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a :class:`~transformers.BartModel`. It is used to | |
instantiate a BART model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the BART `facebook/bart-large | |
<https://huggingface.co/facebook/bart-large>`__ architecture. | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
Args: | |
vocab_size (:obj:`int`, `optional`, defaults to 50265): | |
Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the | |
:obj:`inputs_ids` passed when calling :class:`~transformers.BartModel` or | |
:class:`~transformers.TFBartModel`. | |
d_model (:obj:`int`, `optional`, defaults to 1024): | |
Dimensionality of the layers and the pooler layer. | |
encoder_layers (:obj:`int`, `optional`, defaults to 12): | |
Number of encoder layers. | |
decoder_layers (:obj:`int`, `optional`, defaults to 12): | |
Number of decoder layers. | |
encoder_attention_heads (:obj:`int`, `optional`, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
decoder_attention_heads (:obj:`int`, `optional`, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, | |
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. | |
dropout (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (:obj:`float`, `optional`, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
activation_dropout (:obj:`float`, `optional`, defaults to 0.0): | |
The dropout ratio for activations inside the fully connected layer. | |
classifier_dropout (:obj:`float`, `optional`, defaults to 0.0): | |
The dropout ratio for classifier. | |
max_position_embeddings (:obj:`int`, `optional`, defaults to 1024): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
init_std (:obj:`float`, `optional`, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0): | |
The LayerDrop probability for the encoder. See the `LayerDrop paper <see | |
https://arxiv.org/abs/1909.11556>`__ for more details. | |
decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0): | |
The LayerDrop probability for the decoder. See the `LayerDrop paper <see | |
https://arxiv.org/abs/1909.11556>`__ for more details. | |
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
If True, use gradient checkpointing to save memory at the expense of slower backward pass. | |
scale_embedding (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Scale embeddings by diving by sqrt(d_model). | |
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
num_labels: (:obj:`int`, `optional`, defaults to 3): | |
The number of labels to use in :class:`~transformers.BartForSequenceClassification`. | |
forced_eos_token_id (:obj:`int`, `optional`, defaults to 2): | |
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to | |
:obj:`eos_token_id`. | |
Example:: | |
>>> from transformers import BartModel, BartConfig | |
>>> # Initializing a BART facebook/bart-large style configuration | |
>>> configuration = BartConfig() | |
>>> # Initializing a model from the facebook/bart-large style configuration | |
>>> model = BartModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
""" | |
model_type = "bart" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} | |
def __init__( | |
self, | |
vocab_size=50265, | |
decoder_vocab_size=16384 + 1, # encoded image token space + 1 for bos | |
max_position_embeddings=1024, | |
decoder_max_position_embeddings=256 + 1, # number of encoded tokens + 1 for bos, | |
encoder_layers=12, | |
encoder_ffn_dim=4096, | |
encoder_attention_heads=16, | |
decoder_layers=12, | |
decoder_ffn_dim=4096, | |
decoder_attention_heads=16, | |
encoder_layerdrop=0.0, | |
decoder_layerdrop=0.0, | |
activation_function="gelu", | |
d_model=1024, | |
dropout=0.1, | |
attention_dropout=0.0, | |
activation_dropout=0.0, | |
init_std=0.02, | |
classifier_dropout=0.0, | |
scale_embedding=False, | |
gradient_checkpointing=False, | |
use_cache=True, | |
num_labels=3, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
is_encoder_decoder=True, | |
decoder_start_token_id=16384, | |
forced_eos_token_id=2, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.decoder_vocab_size = decoder_vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.decoder_max_position_embeddings = decoder_max_position_embeddings | |
self.d_model = d_model | |
self.encoder_ffn_dim = encoder_ffn_dim | |
self.encoder_layers = encoder_layers | |
self.encoder_attention_heads = encoder_attention_heads | |
self.decoder_ffn_dim = decoder_ffn_dim | |
self.decoder_layers = decoder_layers | |
self.decoder_attention_heads = decoder_attention_heads | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.activation_function = activation_function | |
self.init_std = init_std | |
self.encoder_layerdrop = encoder_layerdrop | |
self.decoder_layerdrop = decoder_layerdrop | |
self.classifier_dropout = classifier_dropout | |
self.use_cache = use_cache | |
self.num_hidden_layers = encoder_layers | |
self.gradient_checkpointing = gradient_checkpointing | |
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True | |
super().__init__( | |
num_labels=num_labels, | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
is_encoder_decoder=is_encoder_decoder, | |
decoder_start_token_id=decoder_start_token_id, | |
forced_eos_token_id=forced_eos_token_id, | |
**kwargs, | |
) | |
# ensure backward compatibility for BART CNN models | |
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False): | |
self.forced_bos_token_id = self.bos_token_id | |
warnings.warn( | |
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions." | |
"The config can simply be saved and uploaded again to be fixed." | |
) | |