Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoModelForSeq2SeqLM | |
from transformers import AutoTokenizer | |
from transformers import pipeline | |
from pprint import pprint | |
import re | |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation" | |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True) | |
# model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME_OR_PATH) | |
def skip_special_tokens_and_prettify(text, tokenizer): | |
recipe_maps = {"<sep>": "--", "<section>": "\n"} | |
recipe_map_pattern = "|".join(map(re.escape, recipe_maps.keys())) | |
text = re.sub( | |
recipe_map_pattern, | |
lambda m: recipe_maps[m.group()], | |
re.sub("|".join(tokenizer.all_special_tokens), "", text) | |
) | |
data = {"title": "", "ingredients": [], "directions": []} | |
for section in text.split("\n"): | |
section = section.strip() | |
section = section.strip() | |
if section.startswith("title:"): | |
data["title"] = section.replace("title:", "").strip() | |
elif section.startswith("ingredients:"): | |
data["ingredients"] = [s.strip() for s in section.replace("ingredients:", "").split('--')] | |
elif section.startswith("directions:"): | |
data["directions"] = [s.strip() for s in section.replace("directions:", "").split('--')] | |
else: | |
pass | |
return data | |
def post_generator(output_tensors, tokenizer): | |
output_tensors = [output_tensors[i]["generated_token_ids"] for i in range(len(output_tensors))] | |
texts = tokenizer.batch_decode(output_tensors, skip_special_tokens=False) | |
texts = [skip_special_tokens_and_prettify(text, tokenizer) for text in texts] | |
return texts | |
# Example | |
generate_kwargs = { | |
"max_length": 512, | |
"min_length": 64, | |
"no_repeat_ngram_size": 3, | |
"early_stopping": True, | |
"num_beams": 5, | |
"length_penalty": 1.5, | |
"num_return_sequences": 2 | |
} | |
items = "potato, cheese" | |
# generator = pipeline("text2text-generation", model=model, tokenizer=tokenizer) | |
# generated = generator(items, return_tensors=True, return_text=False, **generate_kwargs) | |
# outputs = post_generator(generated, tokenizer) | |
# pprint(outputs) |