Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
from datetime import datetime as dt | |
import streamlit as st | |
from streamlit_tags import st_tags | |
import beam_search | |
import top_sampling | |
from pprint import pprint | |
import json | |
with open("config.json") as f: | |
cfg = json.loads(f.read()) | |
st.set_page_config(layout="wide") | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained("flax-community/t5-recipe-generation") | |
model = AutoModelForSeq2SeqLM.from_pretrained("flax-community/t5-recipe-generation") | |
generator = pipeline("text2text-generation", model=model, tokenizer=tokenizer) | |
return generator, tokenizer | |
def sampling_changed(obj): | |
print(obj) | |
with st.spinner('Loading model...'): | |
generator, tokenizer = load_model() | |
# st.image("images/chef-transformer.png", width=400) | |
st.header("Chef transformers (flax-community)") | |
st.markdown("This demo uses [t5 trained on recipe-nlg](https://huggingface.co/flax-community/t5-recipe-generation) to generate recipe from a given set of ingredients") | |
img = st.sidebar.image("images/chef-transformer.png", width=200) | |
add_text_sidebar = st.sidebar.title("Popular recipes:") | |
add_text_sidebar = st.sidebar.text("Recipe preset(example#1)") | |
add_text_sidebar = st.sidebar.text("Recipe preset(example#2)") | |
add_text_sidebar = st.sidebar.title("Mode:") | |
sampling_mode = st.sidebar.selectbox("select a Mode", index=0, options=["Beam Search", "Top-k Sampling"]) | |
original_keywords = st.multiselect("Choose ingredients", | |
cfg["first_100"], | |
["parmesan cheese", "fresh oregano", "basil", "whole wheat flour"] | |
) | |
st.write("Add custom ingredients here:") | |
custom_keywords = st_tags( | |
label="", | |
text='Press enter to add more', | |
value=['salt'], | |
suggestions=cfg["next_100"], | |
maxtags = 15, | |
key='1') | |
all_ingredients = [] | |
all_ingredients.extend(original_keywords) | |
all_ingredients.extend(custom_keywords) | |
all_ingredients = ", ".join(all_ingredients) | |
st.markdown("**Generate recipe for:** "+all_ingredients) | |
submit = st.button('Get Recipe!') | |
if submit: | |
with st.spinner('Generating recipe...'): | |
if sampling_mode == "Beam Search": | |
generated = generator(all_ingredients, return_tensors=True, return_text=False, **beam_search.generate_kwargs) | |
outputs = beam_search.post_generator(generated, tokenizer) | |
elif sampling_mode == "Top-k Sampling": | |
generated = generator(all_ingredients, return_tensors=True, return_text=False, **top_sampling.generate_kwargs) | |
outputs = top_sampling.post_generator(generated, tokenizer) | |
output = outputs[0] | |
markdown_output = "" | |
markdown_output += f"## {output['title'].capitalize()}\n" | |
markdown_output += f"#### Ingredients:\n" | |
for o in output["ingredients"]: | |
markdown_output += f"- {o}\n" | |
markdown_output += f"#### Directions:\n" | |
for o in output["directions"]: | |
markdown_output += f"- {o}\n" | |
st.markdown(markdown_output) | |
st.balloons() | |